Log in

Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Hypertriglyceridemia, a symptom of elevated triglyceride level in the blood, is a potent risk factor for cardiovascular and metabolic disorders. Among the numerous treatments to regulate circulating triglyceride levels, fibrates are widely used to treat hypertriglyceridemia, although they also have side effects such as hepatotoxicity and gallstone formation. In the present study, we aimed to investigate the blood triglyceride-lowering effects of a naturally fermented green tea extract (NFGT) and the underlying mechanisms on hypertriglyceridemia in vitro and in vivo models. NFGT suppressed the expression of lipogenic genes, while augmented expression of fatty acid oxidation-related genes in cultured cells, leading to the significant decrease of intracellular triglyceride content. NFGT treated group in fructose-induced hypertriglyceridemic rat model significantly decreased plasma and hepatic triglyceride, which was accompanied by an increase in excretion of fecal fat. Taken together, we propose that NFGT could be potentially a novel functional ingredient to prevent or treat hypertriglyceridemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Budoff M. Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. The American Journal of Cardiology. 118: 138-145 (2016)

    Article  CAS  Google Scholar 

  • Cai X, Hayashi S, Fang C, Hao S, Wang X, Nishiguchi S, Tsutsui H, Sheng J. Pu’erh tea extract-mediated protection against hepatosteatosis and insulin resistance in mice with diet-induced obesity is associated with the induction of de novo lipogenesis in visceral adipose tissue. Journal of Gastroenterology. 52: 1240-1251 (2017)

    Article  CAS  Google Scholar 

  • Chen L, Yuntong G, Lingli S, **ngfei L, Qiuhua L, Wenji Z, Limin X, Shili S, Fanrong C. Six types of tea reduce high-fat-diet-induced fat accumulation in mice by increasing lipid metabolism and suppressing inflammation. Food and Function. 10: 2061-2074 (2019)

    Article  Google Scholar 

  • Gargouri Y, Julien R, Bois AG, Verger R, Sarda. Studies on the detergent inhibition of pancreatic lipase activity. Journal of Lipid Research. 24: 1336-1342 (1983)

    Article  CAS  Google Scholar 

  • Hedrington MS, Davis SN. Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver. Expert Opinion on Drug Metabolism & Toxicology. 14: 671-677 (2018)

    Article  CAS  Google Scholar 

  • Huang F, Wang S, Zhao A, Zheng X, Zhang Y, Lei S, Ge K, Qu C, Zhao Q, Yan C, Jia W. Pu-erh tea regulates fatty acid metabolism in mice under high-fat diet. Frontiers in Pharmacology. 10: 63 (2019)

    Article  CAS  Google Scholar 

  • Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food and Function. 3: 170-177 (2012)

    Article  CAS  Google Scholar 

  • Hou H, Yang W, Bao S, Cao Y. Epigallocatechin Gallate Suppresses Inflammatory Responses by Inhibiting Toll-like Receptor 4 Signaling and Alleviates Insulin Resistance in the Livers of High-fat-diet Rats. Journal of Oleo Science. 69: 479-486 (2020)

    Article  CAS  Google Scholar 

  • Jensen GS, Beaman JL, He Y, Guo Z, Sun H. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial. Clinical Interventions in Aging. 11: 367-376 (2016)

    Article  CAS  Google Scholar 

  • Jiang HY, Shii T, Matsuo Y, Tanaka T, Jiang ZZ, Kouno I. A new catechin oxidation product and polymeric polyphenols of post-fermented tea. Food Chemistry. 129: 830-836 (2011)

    Article  CAS  Google Scholar 

  • Jung MH, Seong PN, Kim MH, Myong NH, Chang MJ. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats. Nutrition Research and Practice. 7: 366-372 (2013)

    Article  CAS  Google Scholar 

  • Kim BH, Jang JO, Joa JH, Kim JA, Song SY, Lim CK, Kim CH, Jung YB, Seong KC, Kim HS, Moon DG. A comparison of the microbial diversity in Korean and Chinese post-fermented teas. Microbiology and Biotechnology Letters. 45: 71-80 (2017)

    Article  CAS  Google Scholar 

  • Kim SR, Je J, Jeong K, Kim SJ, Lee KY, Choi SG, Kim H, Park SW. Perilla oil decreases aortic and hepatic lipid accumulation by modulating lipogenesis and lipolysis in high-fat diet-fed mice. Journal of Medicinal Food. 22: 14-21 (2019)

    Article  CAS  Google Scholar 

  • Kochman J, Jakubczyk K, Antoniewicz J, Mruk H, Janda K. Health benefits and chemical composition of Matcha green tea: A review. Molecules. 26: 85 (2020)

    Article  Google Scholar 

  • Kubota K, Sumi S, Tojo H, Sumi-Inoue Y, I-Chin H, Oi Y, Fujita H, Urata H. Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutrition Research. 31: 421–428 (2011)

  • Lee ES, Lee MK. Effect of extraction condition on the content of EGCG and caffeine of green tea: Comparison with the inhibitory activity on pancreatic lipase. Natural Product Sciences. 19: 166-172 (2013)

    CAS  Google Scholar 

  • Li F, Gao C, Yan P, Zhang M, Wang Y, Hu Y, Wu X, Wang X, Sheng J. EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Frontiers in Pharmacology. 22: 1366 (2018)

    Article  Google Scholar 

  • Li Y, Wu S. Epigallocatechin gallate suppresses hepatic cholesterol synthesis by targeting SREBP-2 through SIRT1/FOXO1 signaling pathway. Molecular and Cellular Biochemistry. 448: 175 – 185 (2018)

    Article  CAS  Google Scholar 

  • Lin JK, Lin-Shiau SY. Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Molecular Nutrition & Food Research. 50: 211-217 (2006)

    Article  CAS  Google Scholar 

  • Liang CC, Wang IK, Kuo HL, Yeh HC, Lin HH, Liu YL, Hsu WM, Huang CC, Chang CT. Long-term use of fenofibrate is associated with increased prevalence of gallstone disease among patients undergoing maintenance hemodialysis. Renal Failure. 33: 489-493 (2011)

    Article  CAS  Google Scholar 

  • Lv HP, Zhu Y, Tan JF, Guo LG, Dai WD, Lin Z. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia. Journal of Functional Foods. 19: 194-203 (2015)

    Article  CAS  Google Scholar 

  • Millan J, Pintó X, Brea A, Blasco M, Hernández-Mijares A, Ascaso J, Diaz A, Mantilla T, Pedro-Botet J. Fibrates in the secondary prevention of cardiovascular disease (infarction and stroke). Results of a systematic review and meta-analysis of the Cochrane collaboration. Clínica e Investigación en Arteriosclerosis. 30: 30–35 (2018)

  • Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg HN, Goldberg AC, Howard WJ, Jacobson MS, Kris-Etherton PM, Lennie TA, Levi M, Mazzone T, Pennathur S. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 123: 2292-2333 (2011)

    Article  Google Scholar 

  • Naito Y, Ushiroda C, Mizushima K, Inoue R, Yasukawa Z, Abe A, Takagi T. Epigallocatechin-3-gallate (EGCG) attenuates non-alcoholic fatty liver disease via modulating the interaction between gut microbiota and bile acids. Journal of Clinical Biochemistry and Nutrition. 67: 2-9 (2020)

    Article  CAS  Google Scholar 

  • Oi Y, Hou IC, Fujita H, Yazawa K. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytotherapy Research. 26: 475-481 (2012)

    Article  CAS  Google Scholar 

  • Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, Bae IH, Lee SJ. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. Journal of Medicinal Food. 18: 549-556 (2015)

    Article  Google Scholar 

  • Seo DB, Jeong HW, Kim YJ, Kim S, Kim JK, Lee JH, Joo K, Choi JK, Shin SS, Lee SJ. Fermented green tea extract exhibits hypolipidaemic effects through the inhibition of pancreatic lipase and promotion of energy expenditure. British Journal of Nutrition. 117: 177-186 (2017)

    Article  CAS  Google Scholar 

  • Sud N, Zhang H, Pan K, Cheng X, Cui J, Su Q. Aberrant expression of microRNA induced by high-fructose diet: implications in the pathogenesis of hyperlipidemia and hepatic insulin resistance. Journal of Nutritional Biochemistry. 43: 125-131 (2017)

    Article  CAS  Google Scholar 

  • Tada H, Nohara A, Kawashiri MA. Serum triglycerides and atherosclerotic cardiovascular disease: Insights from Clinical and Genetic Studies. Nutrients. 10: 1789 (2018)

    Article  Google Scholar 

  • Tappy L, Le KA, Tran C, Paquot N. Fructose and metabolic diseases: new findings, new questions. Nutrition. 26: 1044-1049 (2010)

    Article  CAS  Google Scholar 

  • Tenenbaum A, Fisman EZ. Fibrates are an essential part of modern anti-dyslipidemic arsenal: spotlight on atherogenic dyslipidemia and residual risk reduction. Cardoivascular Diabetology. 11: 125 (2012)

    Article  CAS  Google Scholar 

  • Tranchida F, Tchiakpe L, Rakotoniaina Z, Deyris V, Ravion O, Hiol A. Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats. Journal of Zhejiang University Science B. 13: 307-317 (2012)

    Article  CAS  Google Scholar 

  • Yasuyuki O, I-Ching H, Hiroyuki F, Kazunaga Y. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and gallic acid. Phytotherapy Research. 26: 475–481 (2012)

  • Zhu MZ, Li N, Zhou F, Ouyang J, Lu DM, Xu W, Li J, Lin HY, Zhang Z, **ao JB, Wang KB, Huang JA, Liu ZH, Wu JL. Microbial bioconversion of the chemical components in dark tea. Food Chemistry. 312: 126043 (2020)

Download references

Acknowledgements

We appreciate the important discussion and helpful advice from Dr. **-Oh Chung (AmorePacific) and Dr. Min-Seuk Lee (Osulloc Farm). We also acknowledge Kiyeop Park (Aestura Corporation) for technical assistance in animal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoung Park.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.W., Lee, JH., Choi, J.K. et al. Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet. Food Sci Biotechnol 30, 1581–1591 (2021). https://doi.org/10.1007/s10068-021-00992-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-021-00992-y

Keywords

Navigation