Log in

Carbohydrate polymers of chirata (Swertia chirata) leaves: Structural features, in vitro anti-oxidant activity and fluorescence quenching study

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chirata (Swertia chirata) is widely used in Indian folk medicine for the prevention of various disorders. Herein, we analyzed the water-extracted carbohydrate polymer (WECP) of this herb using chemical, chromatographic, and spectroscopic methods. The anti-oxidant capacity of this fraction was studied by ferric reducing anti-oxidant power (FRAP) and DPPH radical assays. Effect of WECP on bovine serum albumin spectrum (BSA) was determined using excitation wavelength of 282 nm. Anion exchange chromatography of WECP yielded 5 fractions (F1–F5) with different chemical compositions. The major fraction (F5) was homogeneous, had an apparent molecular mass of 4.5 kDa, and contains both carbohydrates (57%) and phenolics (34%). The anti-oxidant capacities of WECP and F5 were comparable to standard anti-oxidants. Notably, activities of the carbohydrate polymers (F1–F5) correlate with their phenolics content. Fluorescence quenching measurement suggests that F5 can form complex with BSA and the value of the binding constant is K=6.28×105/M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress, and the biology of aging. Nature 408: 239–247 (2000)

    Article  CAS  Google Scholar 

  2. Mucke L. Alzheimer’s disease. Nature 461: 495–497 (2009)

    Article  Google Scholar 

  3. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J. Am. Soc. Nephrol. 14: 241–245 (2003)

    Article  Google Scholar 

  4. Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman L, Livneh Z. DNA repair of oxidative DNA damage in human carcinogenesis: Potential application for cancer risk assessment and prevention. Cancer Lett. 266: 60–72 (2008)

    Article  CAS  Google Scholar 

  5. Hertog MGL, Sweetnam PM, Fehily AM, Elwood PC, Kromhout D. Antioxidant flavonols and ischemic heart disease in a welsh population of men: The caerphilly study. Am. J. Clin. Nutr. 65: 1489–1494 (1997)

    CAS  Google Scholar 

  6. Chaudhuri RK, Pal A, Jha TB. Regeneration and characterization of Swertia chirata Buch.-Ham. Ex Wall plants from immature seed cultures. Sci. Hortic.-Amsterdam 120: 107–114 (2009)

    Article  CAS  Google Scholar 

  7. Chakravarty AK, Mukhopadhyay S, Das B. Swertane triterpenoids from Swertia chirata. Phytochemistry 30: 4087–4092 (1991)

    Article  CAS  Google Scholar 

  8. Ishimaru K, Sudo H, Satake M, Shimomurat K. Phenyl glucosides from a hairy root culture of Swertia japonica. Phytochemistry 29: 3823–3825 (1990)

    Article  CAS  Google Scholar 

  9. Menkovic N, Savikin-Fodulovic K, Bulatovic V, Aljancic I, Juranic N, Macura S, Vajs V, Milosavljevic S. Xanthones from Swertia punctata. Phytochemistry 61: 415–420 (2002)

    Article  CAS  Google Scholar 

  10. Miana GA. Flavonoids of Swertia purpurascens. Phytochemistry 12: 728–729 (1973)

    Article  CAS  Google Scholar 

  11. Reen RK, Karan M, Singh K, Karan V. Screening of various Swertia species extracts in primary monolayer cultures of rat hepatocytes against carbon tetrachloride- and paracetamol-induced toxicity. J. Ethnopharmacol. 75: 239–247 (2001)

    Article  CAS  Google Scholar 

  12. Iqbal Z, Lateef M, Khan MN, Jabbar A, Akhtar MS. Anthelmintic activity of Swertia chirata against gastrointestinal nematodes of sheep. Fitoterapia 77: 463–465 (2006)

    Article  Google Scholar 

  13. Chandra Sekar B, Mukherjee B, Chakravarti RB, Mukherjee SK. Effect of different fractions of Swertia chirayita on the blood sugar level of albino rats. J. Ethnopharmacol. 21: 175–181 (1987)

    Article  Google Scholar 

  14. Tripathi R, Mohan H, Kamat JP. Modulation of oxidative damage by natural products. Food Chem. 100: 81–90 (2007)

    Article  CAS  Google Scholar 

  15. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–366 (1956)

    Article  CAS  Google Scholar 

  16. Ahmed A, Labavitch JM. A simplified method for accurate determination of cell wall uronide content. J. Food Biochem. 1: 361–365 (1977)

    Article  CAS  Google Scholar 

  17. Blakeney AB, Harris P, Henry RJ, Bruce AB. A simple rapid preparation of alditol acetates for monosaccharide analysis. Carbohyd. Res. 113: 291–299 (1983)

    Article  CAS  Google Scholar 

  18. Ghosh T, Pujol CA, Damonte EB, Sinha S, Ray B. Sulphated xylomannans from the red seaweed Sebdenia polydactyla: Structural features, chemical modification, and antiviral activity. Antivir. Chem. Chemoth. 19: 235–242 (2009)

    CAS  Google Scholar 

  19. York WS, Darvill A, O’Neill M, Stevenson T, Albersheim P. Isolation and characterisation of plant cell walls and cell wall components. Method. Enzymol. 118: 3–40 (1985)

    Article  Google Scholar 

  20. Ishii T, Hiroi T. Isolation and characterization of feruloylated arabinoxylan oligosaccharides from bamboo shoot cell-walls. Carbohyd. Res. 196: 175–183 (1990)

    Article  CAS  Google Scholar 

  21. Blakeney AB, Stone BA. Methylation of carbohydrates with lithium methylsulphinyl carbanion. Carbohyd. Res. 140: 319–324 (1985)

    Article  CAS  Google Scholar 

  22. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  23. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  24. Chattopadhyay N, Ghosh T, Sinha S, Chattopadhyay K, Karmakar P, Ray B. Polysaccharides from Turbinaria conoides: Structural features and antioxidant capacity. Food Chem. 11: 823–829 (2010)

    Article  Google Scholar 

  25. Chatterjee UR, Bandyopadhyay SS, Ghosh D, Ghosal PK, Ray B. In vitro anti-oxidant activity, fluorescence quenching study, and structural features of carbohydrate polymers from Phyllanthus emblica. Int. J. Biol. Macromol. 49: 637–642 (2011)

    Article  CAS  Google Scholar 

  26. Sinha S, Bandyopadhyay SS, Ghosh D, Chatterjee UR, Saha S, Ghosal PK, Ray B. Structural characteristics, fluorescence quenching, and antioxidant activity of the arabinogalactan protein rich fraction from senna (Cassia angustifolia) leaves. Food Sci. Biotechnol. 20: 1005–1011 (2011)

    Article  CAS  Google Scholar 

  27. Fry SC. The Growing Plant Cell Wall: Chemical and Metabolic Analysis. Longman Scientific and Technical, Longman Group Ltd., London, UK. pp. 135–139 (1988)

    Google Scholar 

  28. Bassler GC, Silverstein RM. Spectrometric Identification of Organic Compounds. 2nd ed. John Wiley & Sons, New York, NY, USA. p. 98 (1963)

    Google Scholar 

  29. Humberstone AJ, Charman WN. Lipid-based vehicles for oral delivery of poorly soluble drugs. Adv. Drug Deliver. Rev. 25: 103–128 (1997)

    Article  CAS  Google Scholar 

  30. Yuan XP, Wang J, Yao HY, Chen F. Free radical scavenging capacity and inhibitory activity on rat erythrocyte hemolysis of feruloyl oligosaccharides from wheat bran insoluble dietary fiber. LWT-Food Sci. Technol. 38: 877–883 (2005)

    Article  CAS  Google Scholar 

  31. Jannin B, Menzel M, Berlot JP, Delmas D, Lancon A, La-truffe N. Transport of resveratrol, a cancer chemopreventive agent, to cellular targets: Plasmatic protein binding and cell uptake. Biochem. Pharmacol. 38: 1113–1118 (2004)

    Article  Google Scholar 

  32. He XM, Carter DC. Atomic structure and chemistry of human serum albumin. Nature 358: 209–215 (1992)

    Article  CAS  Google Scholar 

  33. Peters T. Serum albumin. Adv. Protein Chem. 37: 161–245 (1985)

    Article  CAS  Google Scholar 

  34. Bourassa P, Kanakis CD, Tarantilis P, Pollissious MG, Tajmir-Riahi HA. Resveratrol, genistein, and curcumin bind bovine serum albumin. J. Phys. Chem. B. 114: 3348–3354 (2010)

    Article  CAS  Google Scholar 

  35. Kragh-Hansen U. Structure and ligand binding properties of human serum albumin. Dan. Med. Bull. 37: 57–84 (1990)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimalendu Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Bandyopadhyay, S.S., Chatterjee, U.R. et al. Carbohydrate polymers of chirata (Swertia chirata) leaves: Structural features, in vitro anti-oxidant activity and fluorescence quenching study. Food Sci Biotechnol 21, 409–417 (2012). https://doi.org/10.1007/s10068-012-0052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0052-y

Keywords

Navigation