Log in

The nuclear localization of glycogen synthase kinase 3β is required its putative PY-nuclear localization sequences

  • Published:
Molecules and Cells

Abstract

Glycogen synthase kinase-3β(GSK-3β), which is a member of the serine/threonine kinase family, has been shown to be crucial for cellular survival, differentiation, and metabolism. Here, we present evidence that GSK-3β is associated with the karyopherin β2 (Kap β2) (102-kDa), which functions as a substrate for transportation into the nucleus. A potential PY-NLS motif (109IVRLRYFFY117) was observed, which is similar with the consensus PY NLS motif (R/K/H)X 2–5PY in the GSK-3β catalytic domain. Using a pull down approach, we observed that GSK-3β physically interacts with Kap β2 both in vivo and in vitro. Secondly, GSK-3β and Kap β2 were shown to be co-localized by confocal microscopy. The localization of GSK-3β to the nuclear region was disrupted by putative Kap β2 binding site mutation. Furthermore, in transient transfection assays, the Kap β2 binding site mutant induced a substantial reduction in the in vivo serine/threonine phosphorylation of GSK-3β, where- as the GSK-3β wild type did not. Thus, our observations indicated that Kap β2 imports GSK-3β through its putative PY NLS motif from the cytoplasm to the nucleus and increases its kinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bijur, G.N., and Jope, R.S. (2003). Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport 14, 2415–2419.

    Article  PubMed  CAS  Google Scholar 

  • Bonifaci, N., Moroianu, J., Radu, A., and Blobel, G. (1997). Karyopherin beta2 mediates nuclear import of a mRNA binding protein. Proc. Natl. Acad. Sci. USA 94, 5055–5060.

    Article  PubMed  CAS  Google Scholar 

  • Cole, A., Frame, S., and Cohen, P. (2004). Further evidence that the tyrosine phosphorylation of glycogen synthase kinase-3 (GSK3) in mammalian cells is an autophosphorylation event. Biochem. J. 377, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  • Eun Jeoung, L., Sung Hee, H., Jaesun, C., Sung Hwa, S., Kwang Hum, Y., Min Kyoung, K., Tae Yoon, P., and Sang Sun, K. (2008). Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochem. J. 2, 67–76.

    Article  PubMed  Google Scholar 

  • Frame, S., Cohen, P., and Biondi, R.M. (2001). A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321–1327.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Zheng, S., An, N., Athanasopoulos, T., Popplewell, L., Liang, A., Li, K., Hu, C., and Zhu, Y. (2011). beta-catenin as a potential key target for tumor suppression. Int. J. Cancer 129, 1541–1551.

    Article  PubMed  CAS  Google Scholar 

  • Hongisto, V., Vainio, J.C., Thompson, R., Courtney, M.J., and Coffey, E.T. (2008). The Wnt pool of glycogen synthase kinase 3beta is critical for trophic-deprivation-induced neuronal death. Mol. Cell. Biol. 28, 1515–1527.

    Article  PubMed  CAS  Google Scholar 

  • Hoshi, M., Sato, M., Kondo, S., Takashima, A., Noguchi, K., Takahashi, M., Ishiguro, K., and Imahori, K. (1995). Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mito chondria. J. Biochem. 118, 683–685.

    PubMed  CAS  Google Scholar 

  • Hur, E.M., and Zhou, F.Q. (2010). GSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, A. (1999). Roles of Axin in the Wnt signalling pathway. Cell Signal. 11, 777–788.

    Article  PubMed  CAS  Google Scholar 

  • Ku, B.M., Lee, Y.K., Jeong, J.Y., Ryu, J., Choi, J., Kim, J.S., Cho, Y.W., Roh, G.S., Kim, H.J., Cho, G.J., et al. (2011). Caffeine inhibits cell proliferation and regulates PKA/GSK3beta pathways in U87MG human glioma cells. Mol. Cells 31, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, C.W., Wang, W.H., and Liu, S.T. (2011). Map** signals that are important for nuclear and nucleolar localization in MCRS2. Mol. Cells 31, 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Lange, A., Mills, R.E., Devine, S.E., and Corbett, A.H. (2008). A PYNLS nuclear targeting signal is required for nuclear localization and function of the Saccharomyces cerevisiae mRNA-binding protein Hrp1. J. Biol. Chem. 283, 12926–12934.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E.J., Shin, S.H., Hyun, S., Chun, J., and Kang, S.S. (2011). Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activates. Animal Cells Syst. (Seoul) 15, 95–106.

    Article  Google Scholar 

  • Lustig, B., and Behrens, J. (2003). The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 129, 199–221.

    PubMed  CAS  Google Scholar 

  • Marfori, M., Mynott, A., Ellis, J.J., Mehdi, A.M., Saunders, N.F., Curmi, P.M., Forwood, J.K., Boden, M., and Kobe, B. (2011). Molecular basis for specificity of nuclear import and prediction of nuclear localization. Biochim. Biophys. Acta 1813, 1562–1577.

    Article  PubMed  CAS  Google Scholar 

  • Meares, G.P., and Jope, R.S. (2007). Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J. Biol. Chem. 282, 16989–17001.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R. (2010). Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol. Cancer 9, 144.

    Article  PubMed  Google Scholar 

  • Mo, Y.Y., Wang, C., and Beck, W.T. (2000). A novel nuclear localization signal in human DNA topoisomerase I. J. Biol. Chem. 275, 41107–41113.

    Article  PubMed  CAS  Google Scholar 

  • Moule, S.K., Welsh, G.I., Edgell, N.J., Foulstone, E.J., Proud, C.G., and Denton, R.M. (1997). Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J. Biol. Chem. 272, 7713–7719.

    Article  PubMed  CAS  Google Scholar 

  • Patel, S., Doble, B., and Woodgett, J.R. (2004). Glycogen synthase kinase-3 in insulin and Wnt signalling: a double-edged sword? Biochem. Soc. Trans. 32, 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, D.M., Pronobis, M.I., Poulton, J.S., Waldmann, J.D., Stephenson, E.M., Hanna, S., and Peifer, M. (2011). Deconstructing the sscatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Mol. Biol. Cell 22, 1845–1863.

    Article  PubMed  CAS  Google Scholar 

  • Suel, K.E., Gu, H., and Chook, Y.M. (2008). Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals. PLoS Biol. 6, e137.

    Article  PubMed  Google Scholar 

  • Sui, Z., Kovacs, A.D., and Maggirwar, S.B. (2006). Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochem. Biophys. Res. Commun. 345, 1643–1648.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Haque, M., Nagoshi, E., Takemoto, M., Shimamoto, T., Yoneda, Y., and Yamanishi, K. (2000). Characterization of human herpesvirus 7 U27 gene product and identification of its nuclear localization signal. Virology 272, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Tanioka, T., Tamura, Y., Fukaya, M., Shinozaki, S., Mao, J., Kim, M., Shimizu, N., Kitamura, T., and Kaneki, M. (2011). Inducible nitricoxide synthase and nitric oxide donor decrease insulin receptor substrate-2 protein expression by promoting proteasome-dependent degradation in pancreatic beta-cells: involvement of glycogen synthase kinase-3beta. J. Biol. Chem. 286, 29388–29396.

    Article  PubMed  CAS  Google Scholar 

  • Topol, L., Chen, W., Song, H., Day, T.F., and Yang, Y. (2009). Sox9 inhibits Wnt signaling by promoting beta-catenin phosphorylation in the nucleus. J. Biol. Chem. 284, 3323–3333.

    Article  PubMed  CAS  Google Scholar 

  • Twomey, C., and McCarthy, J.V. (2006). Presenilin-1 is an unprimed glycogen synthase kinase-3beta substrate. FEBS Lett. 580, 4015–4020.

    Article  PubMed  CAS  Google Scholar 

  • Xu, D., Farmer, A., and Chook, Y.M. (2010). Recognition of nuclear targeting signals by Karyopherin-beta proteins. Curr. Opin. Struct. Biol. 20, 782–790.

    Article  PubMed  CAS  Google Scholar 

  • Yi, F., Pereira, L., Hoffman, J.A., Shy, B.R., Yuen, C.M., Liu, D.R., and Merrill, B.J. (2011). Opposing effects of Tcf3 and Tcf1 control Wnt stimulation of embryonic stem cell self-renewal. Nat. Cell Biol. 13, 762–770.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, P., Sciarretta, S., Galeotti, J., Volpe, M., and Sadoshima, J. (2011). Differential roles of GSK-3beta during myocardial ischemia and ischemia/reperfusion. Circ. Res. 109, 502–511.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Sun Kang.

About this article

Cite this article

Shin, S.H., Lee, E.J., Chun, J. et al. The nuclear localization of glycogen synthase kinase 3β is required its putative PY-nuclear localization sequences. Mol Cells 34, 375–382 (2012). https://doi.org/10.1007/s10059-012-0167-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-012-0167-2

Keywords

Navigation