Log in

Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa

  • Published:
Molecules and Cells

An Erratum to this article was published on 22 December 2011

Abstract

Pseudomonas quinolone signal (PQS) plays a role in the regulation of virulence genes and it is intertwined in the las/rhl quorum sensing (QS) circuits of Pseudomonas aeruginosa. PQS is synthesized from anthranilate by pqsA-D and pqsH whose expression is influenced by the las/rhl systems. Since anthranilate can be degraded by functions of antABC and catBCA, PQS synthesis might be regulated by the balance between the expression of the pqsA-D/phnAB, pqsH, antABC, and catBCA gene loci. antA and catA are repressed by LasR during log phase and activated by RhlR in late stationary phase, whereas pqsA-E/phnAB is activated by LasR in log phase and repressed by RhlR. QscR represses both but each repression occurs in a different growth phase. This growth phase-differential regulation appears to be accomplished by the antagonistic interplay of LasR, RhlR, and QscR, mediated by two intermediate regulators, AntR and PqsR, and their cofactors, anthranilate and PQS, where the expressions of antR and pqsR and the production of anthranilate and PQS are growth phase-differentially regulated by QS systems. Especially, the anthranilate level increases in an RhlR-dependent manner at late stationary phase. From these results, we suggest that RhlR and LasR regulate the anthranilate metabolism in a mutually antagonistic and growth phase-differential manner by affecting both the expressions and activities of AntR and PqsR, and that QscR also phase-differentially represses both LasR and RhlR functions in this regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aendekerk, S., Diggle, S.P., Song, Z., Hoiby, N., Cornelis, P., Williams, P., and Camara, M. (2005). The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151, 1113–1125.

    Article  PubMed  CAS  Google Scholar 

  • Brint, J.M., and Ohman, D.E. (1995). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlRRhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J. Bacteriol. 177, 7155–7163.

    PubMed  CAS  Google Scholar 

  • Calfee, M.W., Coleman, J.P., and Pesci, E.C. (2001). Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 11633–11637.

    Article  PubMed  CAS  Google Scholar 

  • Chugani, S.A., Whiteley, M., Lee, K.M., D’Argenio, D., Manoil, C., and Greenberg, E.P. (2001). QscR, a modulator of quorumsensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98, 2752–2757.

    Article  PubMed  CAS  Google Scholar 

  • Deziel, E., Lepine, F., Milot, S., He, J., Mindrinos, M.N., Tompkins, R.G., and Rahme, L.G. (2004). Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101, 1339–1344.

    Article  PubMed  CAS  Google Scholar 

  • Diggle, S.P., Winzer, K., Chhabra, S.R., Worrall, K.E., Camara, M., and Williams, P. (2003). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50, 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Essar, D.W., Eberly, L., Hadero, A., and Crawford, I.P. (1990). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J. Bacteriol. 172, 884–900.

    PubMed  CAS  Google Scholar 

  • Farinha, M.A., and Kropinski, A.M. (1990). Construction of broadhost-range plasmid vectors for easy visible selection and analysis of promoters. J. Bacteriol. 172, 3496–3499.

    PubMed  CAS  Google Scholar 

  • Farrow, J.M., 3rd, and Pesci, E.C. (2007). Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J. Bacteriol. 189, 3425–3433.

    Article  PubMed  CAS  Google Scholar 

  • Fuqua, C., Parsek, M.R., and Greenberg, E.P. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35, 439–468.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, L.A., McKnight, S.L., Kuznetsova, M.S., Pesci, E.C., and Manoil, C. (2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184, 6472–6380.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., et al. (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100, 14339–14344.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C., Kim, J., Park, H.Y., Park, H.J., Kim, C.K., Yoon, J., and Lee, J.H. (2009). Development of inhibitors against TraR quorumsensing system in Agrobacterium tumefaciens by molecular modeling of the ligand-receptor interaction. Mol. Cells 28, 447–453.

    Article  PubMed  CAS  Google Scholar 

  • Latifi, A., Foglino, M., Tanaka, K., Williams, P., and Lazdunski, A. (1996). A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21, 1137–1146.

    Article  PubMed  CAS  Google Scholar 

  • Ledgham, F., Ventre, I., Soscia, C., Foglino, M., Sturgis, J.N., and Lazdunski, A. (2003). Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol. Microbiol. 48, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.H., Lequette, Y., and Greenberg, E.P. (2006). Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59, 602–609.

    Article  PubMed  CAS  Google Scholar 

  • Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A., and Greenberg, E.P. (2006). A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188, 3365–3370.

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi, D.V., Bonsall, R.F., Delaney, S.M., Soule, M.J., Phillips, G., and Thomashow, L.S. (2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465.

    Article  PubMed  CAS  Google Scholar 

  • Mavrodi, D.V., Blankenfeldt, W., and Thomashow, L.S. (2006). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44, 417–445.

    Article  PubMed  CAS  Google Scholar 

  • McGrath, S., Wade, D.S., and Pesci, E.C. (2004). Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol. Lett. 230, 27–34.

    Article  PubMed  CAS  Google Scholar 

  • McKnight, S.L., Iglewski, B.H., and Pesci, E.C. (2000). The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182, 2702–2708.

    Article  PubMed  CAS  Google Scholar 

  • Newman, J.R., and Fuqua, C. (1999). Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Oglesby, A.G., Farrow, J.M., 3rd, Lee, J.H., Tomaras, A.P., Greenberg, E.P., Pesci, E.C., and Vasil, M.L. (2008). The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J. Biol. Chem. 283, 15558–15567.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, J.P., Pesci, E.C., and Iglewski, B.H. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179, 5756–5767.

    PubMed  CAS  Google Scholar 

  • Pesci, E.C., Pearson, J.P., Seed, P.C., and Iglewski, B.H. (1997). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127–3132.

    PubMed  CAS  Google Scholar 

  • Pesci, E.C., Milbank, J.B., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P., and Iglewski, B.H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96, 11229–11234.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.E., Fritsch, F., and Maniatis, T. (1989). Molecular cloning: a laboratory manual. (Cold Spring Harbor, N.Y., USA: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Schuster, M., and Greenberg, E.P. (2006). A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, M., and Greenberg, E.P. (2007). Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8, 287.

    Article  PubMed  Google Scholar 

  • Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P. (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185, 2066–2079.

    Article  PubMed  CAS  Google Scholar 

  • Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., et al. (2000). Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406, 959–964.

    Article  PubMed  CAS  Google Scholar 

  • Van Delden, C., and Iglewski, B.H. (1998). Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551–560.

    Article  PubMed  Google Scholar 

  • Venturi, V. (2006). Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 30, 274–291.

    Article  PubMed  CAS  Google Scholar 

  • Wade, D.S., Calfee, M.W., Rocha, E.R., Ling, E.A., Engstrom, E., Coleman, J.P., and Pesci, E.C. (2005). Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187, 4372–4380.

    Article  PubMed  CAS  Google Scholar 

  • **ao, G., Deziel, E., He, J., Lepine, F., Lesic, B., Castonguay, M.H., Milot, S., Tampakaki, A.P., Stachel, S.E., and Rahme, L.G. (2006). MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol. Microbiol. 62, 1689–1699.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon-Hee Lee.

Additional information

These authors contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10059-011-3322-2

About this article

Cite this article

Choi, Y., Park, HY., Park, S.J. et al. Growth phase-differential quorum sensing regulation of anthranilate metabolism in Pseudomonas aeruginosa . Mol Cells 32, 57–65 (2011). https://doi.org/10.1007/s10059-011-2322-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-011-2322-6

Keywords

Navigation