Log in

Numerical finite-difference time-domain calculation for extreme enhancement of magneto-optical effect at ultraviolet wavelength using Ni-subwavelength grating on SiO2/Ni structure

  • Special Section: Regular Paper
  • International Symposium on Imaging, Sensing, and Optical Memory (ISOM ’20), Takamatsu, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

An extreme enhancement of the polar Kerr magneto-optical (MO) effect was numerically demonstrated using surface plasmon polaritons (SPPs) at the SiO2/Ni interface combined with the Ni-subwavelength grating (SWG). Utilizing the ω–k dispersion relation for the SPP at the SiO2/Ni interface, the parameters of Ni-SWGs were designed to couple the SPP mode with the incident light. The electromagnetic field distribution was calculated using the finite-difference time-domain method to estimate and discuss the enhancement of MO effect in the designed structure. The results indicated that the reflectance of light for the designed structure dramatically decreased owing to SPP excitations. The field distributions revealed that the high electric field of the SPP was concentrated not only on the Ni substrate but also on Ni-SWG, yielding Kerr rotation angle 224 times higher than that without SPP. The results provide a new method for enhancing the MO effect; the extremely large MO enhancement achieved by our structure has a great potential for use in a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stadler, B.J.H., Mizumoto, T.: Integrated magneto-optical materials and isolators: a review. IEEE Photonics J 6(1), 1–15 (2014)

    Article  Google Scholar 

  2. Manera, M.G., Colombelli, A., Taurino, A., Martin, A.G., Rella, R.: Magneto-optical properties of noble-metal nanostructures: functional nanomaterials for bio sensing. Sci Rep 8(1), 12640 (2018)

    Article  ADS  Google Scholar 

  3. Goa, P.E., Hauglin, H., Olsen, Å.A.F., Baziljevich, M., Johansen, T.H.: Magneto-optical imaging setup for single vortex observation. Rev Sci Instrum 74(1), 141–146 (2003)

    Article  ADS  Google Scholar 

  4. Jenkins, D., Clegg, W., Windmill, J., Edmund, S., Davey, P., Newman, D., Wright, C.D., Loze, M., Armand, M., Atkinson, R., Hendren, B., Nutter, P.: Advanced optical and magneto-optical recording techniques: a review. Microsyst Technol 10(1), 66–75 (2003)

    Article  Google Scholar 

  5. Pitaevskii, L.P., Lifshitz, E.M., Sykes, J.B.: Course of theoretical physics: physical kinetics. Elsevier (1981)

    Google Scholar 

  6. Bertrand, P., Hermann, C., Lampel, G., Peretti, J., Safarov, V.: General analytical treatment of optics in layered structures: application to magneto-optics. Phys Rev B (2001). https://doi.org/10.1103/PhysRevB.64.235421

    Article  Google Scholar 

  7. González-Díaz, J.B., García-Martín, A., Armelles, G., García-Martín, J.M., Clavero, C., Cebollada, A., Lukaszew, R.A., Skuza, J.R., Kumah, D.P., Clarke, R.: Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys Rev B (2007). https://doi.org/10.1103/PhysRevB.76.153402

    Article  Google Scholar 

  8. Temnov, V.V., Armelles, G., Woggon, U., Guzatov, D., Cebollada, A., Garcia-Martin, A., Garcia-Martin, J.-M., Thomay, T., Leitenstorfer, A., Bratschitsch, R.: Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photon 4(2), 107–111 (2010)

    Article  ADS  Google Scholar 

  9. Armelles, G., Cebollada, A., García-Martín, A., García-Martín, J.M., González, M.U., González-Díaz, J.B., Ferreiro-Vila, E., Torrado, J.F.: Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. J Opt A Pure Appl Opt (2009). https://doi.org/10.1364/OE.18.015635

    Article  Google Scholar 

  10. Rubio-Roy, M., Vlasin, O., Pascu, O., Caicedo, J.M., Schmidt, M., Goñi, A.R., Tognalli, N.G., Fainstein, A., Roig, A., Herranz, G.: Magneto-optical enhancement by plasmon excitations in nanoparticle/metal structures. Langmuir 28(24), 9010–9020 (2012)

    Article  Google Scholar 

  11. Pourjamal, S., Kataja, M., Maccaferri, N., Vavassori, P., van Dijken, S.: Tunable magnetoplasmonics in lattices of Ni/SiO2/Au dimers. Sci Rep 9(1), 9907 (2019)

    Article  ADS  Google Scholar 

  12. Freire-Fernández, F., Kataja, M., Van Dijken, S.: Surface-plasmon-polariton-driven narrow-linewidth magneto-optics in Ni nanodisk arrays. Nanophotonics 9(1), 113–121 (2020)

    Article  Google Scholar 

  13. Grunin, A.A., Zhdanov, A.G., Ezhov, A.A., Ganshina, E.A., Fedyanin, A.A.: Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings. Appl Phys Lett (2010). https://doi.org/10.1063/1.3533260

    Article  Google Scholar 

  14. Belotelov, V.I., Akimov, I.A., Pohl, M., Kotov, V.A., Kasture, S.F., Vengurlekar, A.S., Gopal, A.V., Yakovlev, D.R., Zvezdin, A.K., Bayer, M.: Enhanced magneto-optical effects in magnetoplasmonic crystals. Nat. Nanotechnol 6(6), 370–376 (2011)

    Article  ADS  Google Scholar 

  15. Lei, C., Man, Z., Tang, S.: Extraordinary optical transmission and enhanced magneto-optical Faraday effects in one-dimensional metallic gratings. Appl Phys Express (2020). https://doi.org/10.35848/1882-0786/abc573

    Article  Google Scholar 

  16. Frolov, A.Y., Shcherbakov, M.R., Fedyanin, A.A.: Dark mode enhancing magneto-optical Kerr effect in multilayer magnetoplasmonic crystals. Phys Rev B (2020). https://doi.org/10.1103/PhysRevB.101.045409

    Article  Google Scholar 

  17. Takashima, Y., Moriiwa, K., Haraguchi, M., Naoi, Y.: Optical detection for magnetic field using Ni-subwavelength grating on SiO2/thin-film Ag/glass structure. Sci Rep 10(1), 19298 (2020)

    Article  ADS  Google Scholar 

  18. Feng, H.Y., Luo, F., Kekesi, R., Granados, D., Meneses-Rodríguez, D., García, J.M., García-Martín, A., Armelles, G., Cebollada, A.: Magnetoplasmonic nanorings as novel architectures with tunable magneto-optical activity in wide wavelength ranges. Adv Opt Mater 2(7), 612–617 (2014)

    Article  Google Scholar 

  19. Feng, H.Y., Luo, F., Arenal, R., Henrard, L., García, F., Armelles, G., Cebollada, A.: Active magnetoplasmonic split-ring/ring nanoantennas. Nanoscale 9(1), 37–44 (2017)

    Article  Google Scholar 

  20. López-Ortega, A., Zapata-Herrera, M., Maccaferri, N., Pancaldi, M., Garcia, M., Chuvilin, A., Vavassori, P.: Enhanced magnetic modulation of light polarization exploiting hybridization with multipolar dark plasmons in magnetoplasmonic nanocavities. Light Sci Appl 9(11), 49 (2020)

    Article  Google Scholar 

  21. Fedyanin, A.A., Aktsipetrov, O.A., Kobayashi, D., Nishimura, K., Uchida, H., Inoue, M.: Enhanced Faraday and nonlinear magneto-optical Kerr effects in magnetophotonic crystals. J Magn Magn Mater 282(1–3), 256–259 (2004)

    Article  ADS  Google Scholar 

  22. Levy, M., Li, R.: Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals. Appl Phys Lett (2006). https://doi.org/10.1063/1.2356379

    Article  Google Scholar 

  23. Goto, T., Baryshev, A.V., Inoue, M., Dorofeenko, A.V., Merzlikin, A.M., Vinogradov, A.P., Lisyansky, A.A., Granovsky, A.: Tailoring surfaces of one-dimensional magnetophotonic crystals: optical Tamm state and Faraday rotation. Phys Rev B (2009). https://doi.org/10.1103/PhysRevB.79.125103

    Article  Google Scholar 

  24. Khokhlov, N.E., Prokopov, A.R., Shaposhnikov, A.N., Berzhansky, V.N., Kozhaev, M.A., Andreev, S.N., Ravishankar, A.P., Achanta, V.G., Bykov, D.A., Zvezdin, A.K., Belotelov, V.I.: Photonic crystals with plasmonic patterns: novel type of the heterostructures for enhanced magneto-optical activity. J Phys D Appl Phys (2015). https://doi.org/10.1364/JOSAB.33.001789

    Article  Google Scholar 

  25. Barsukova, M.G., Shorokhov, A.S., Musorin, A.I., Neshev, D.N., Kivshar, Y.S., Fedyanin, A.A.: Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photonics 4(10), 2390–2395 (2017)

    Article  Google Scholar 

  26. Barsukova, M.G., Musorin, A.I., Shorokhov, A.S., Fedyanin, A.A.: Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces. APL Photonics 10(1063/1), 5066307 (2019)

    Google Scholar 

  27. Zhao, Q., Zhou, J., Zhang, F., Lippens, D.: Mie resonance-based dielectric metamaterials. Mater Today 12(12), 60–69 (2009)

    Article  Google Scholar 

  28. Jahani, S., Jacob, Z.: All-dielectric metamaterials. Nat Nanotechnol 11(1), 23–36 (2016)

    Article  ADS  Google Scholar 

  29. Liu, T., Xu, R., Yu, P., Wang, Z., Takahara, J.: Multipole and multimode engineering in Mie resonance-based metastructures. Nanophotonics 9(5), 1115–1137 (2020)

    Article  Google Scholar 

  30. Johnson, P.B., Christy, R.W.: Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni, and Pd. Phys Rev B 9(12), 5056–5070 (1974)

    Article  ADS  Google Scholar 

  31. Krinchik, G.S., Artemev, V.A.: Magneto-optical properties of Ni Co, and Fe in the ultraviolet visible, and infrared parts of the spectrum. Sov Phys JETP 26(6), 1080–1085 (1968)

    ADS  Google Scholar 

  32. Kikuta, H., Toyota, H., Yu, W.: Optical elements with subwavelength structured surfaces. Opt Rev 10(2), 63–73 (2003)

    Article  Google Scholar 

  33. Sambles, J.R., Bradbery, G.W., Yang, F.Z.: Optical excitation of surface plasmons: an introduction. Contemp Phys 32(3), 173–183 (1991)

    Article  ADS  Google Scholar 

  34. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  35. Malitson, I.H.: Interspecimen comparison of the refractive index of fused silica*. J Opt Soc Am 55(10), 1205–1208 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI (Grant Number JP18K04238, JP21K14515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuusuke Takashima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takashima, Y., Haraguchi, M. & Naoi, Y. Numerical finite-difference time-domain calculation for extreme enhancement of magneto-optical effect at ultraviolet wavelength using Ni-subwavelength grating on SiO2/Ni structure. Opt Rev 29, 62–67 (2022). https://doi.org/10.1007/s10043-021-00711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00711-2

Keywords

Navigation