Log in

Numerical evaluation of linearized image reconstruction based on finite element method for biomedical photoacoustic imaging

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

An image reconstruction algorithm for biomedical photoacoustic imaging is discussed. The algorithm solves the inverse problem of the photoacoustic phenomenon in biological media and images the distribution of large optical absorption coefficients, which can indicate diseased tissues such as cancers with angiogenesis and the tissues labeled by exogenous photon absorbers. The linearized forward problem, which relates the absorption coefficients to the detected photoacoustic signals, is formulated by using photon diffusion and photoacoustic wave equations. Both partial differential equations are solved by a finite element method. The inverse problem is solved by truncated singular value decomposition, which reduces the effects of the measurement noise and the errors between forward modeling and actual measurement systems. The spatial resolution and the robustness to various factors affecting the image reconstruction are evaluated by numerical experiments with 2D geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Wang and S. Hu: Science 335 (2012) 1458.

    Article  ADS  Google Scholar 

  2. M. Xu and L. V. Wang: Rev. Sci. Instrum. 77 (2006) 041101.

    Article  ADS  Google Scholar 

  3. C. Li and L. V. Wang: Phys. Med. Biol. 54 (2009) R59.

    Article  ADS  Google Scholar 

  4. S. Hu and L. V. Wang: J. Biomed. Opt. 15 (2010) 011101.

    Article  ADS  Google Scholar 

  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge: Phys. Med. Biol. 50 (2005) R1.

    Article  ADS  Google Scholar 

  6. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek: Phys. Med. Biol. 50 (2005) 2503.

    Article  Google Scholar 

  7. R. Fukuzawa, S. Okawa, S. Matsuhashi, T. Kusaka, Y. Tanikawa, Y. Hoshi, F. Gao, and Y. Yamada: J. Biomed. Opt. 16 (2011) 116022.

    Article  ADS  Google Scholar 

  8. Y.-S. Chen, W. Frey, S. Kim, P. Kruizinga, K. Homan, and S. Emelianov: Nano Lett. 11 (2011) 348.

    Article  ADS  Google Scholar 

  9. M. Xu, Y. Xu, and L. V. Wang: IEEE Trans. Biomed. Eng. 50 (2003) 1086.

    Article  Google Scholar 

  10. M. Xu and L. V. Wang: Phys. Rev. E 71 (2005) 016706.

    Article  ADS  Google Scholar 

  11. Y. Xu, D. Feng, and L. V. Wang: IEEE Trans. Med. Imaging 21 (2002) 823.

    Article  Google Scholar 

  12. B. E. Treeby, E. Z. Zhang, and B. T. Cox: Inverse Probl. 26 (2010) 115003.

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Laufer, B. Cox, E. Zhang, and P. Beard: Appl. Opt. 49 (2010) 1219.

    Article  ADS  Google Scholar 

  14. H. Jiang, Z. Yuan, and X. Gu: J. Opt. Soc. Am. A 23 (2006) 878.

    Article  MathSciNet  ADS  Google Scholar 

  15. Z. Yuan, Q. Wang, and H. Jiang: Opt. Express 15 (2007) 18076.

    Article  ADS  Google Scholar 

  16. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard: J. Biomed. Opt. 17 (2012) 061202.

    Article  ADS  Google Scholar 

  17. S. R. Arridge: Inverse Probl. 15 (1999) R41.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. M. Schweiger, S. R. Arridge, and D. T. Delpy: J. Math. Imaging Vision 3 (1993) 263.

    Article  MATH  Google Scholar 

  19. B. T. Cox and P. C. Beard: J. Acoust. Soc. Am. 117 (2005) 3616.

    Article  ADS  Google Scholar 

  20. B. T. Cox, S. Kara, S. R. Arridge, and P. C. Beard: J. Acoust. Soc. Am. 121 (2007) 3453.

    Article  ADS  Google Scholar 

  21. C. R. Vogel: Computational Methods for Inverse Problems (SIAM, Philadelphia, PA, 2002).

    Book  MATH  Google Scholar 

  22. S. Holder: Electrical Impedance Tomography: Methods, History and Applications (IOP Publishing, Bristol, U.K., 2005).

    Google Scholar 

  23. J. I. Sperl, K. Zell, P. Menzenbach, C. Haisch, S. Ketzer, M. Marquart, H. Koenig, and M. W. Vogel: Proc. SPIE 6631 (2007) 663103.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinpei Okawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okawa, S., Hirasawa, T., Kushibiki, T. et al. Numerical evaluation of linearized image reconstruction based on finite element method for biomedical photoacoustic imaging. OPT REV 20, 442–451 (2013). https://doi.org/10.1007/s10043-013-0076-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-013-0076-4

Keywords

Navigation