Log in

Hydrochemical quality and microplastic levels of the groundwaters of Tuticorin, southeast coast of India

Qualité hydrochimique et niveaux de microplastiques dans les eaux souterraines de Tuticorin, côte sud-est de l’Inde

Calidad hidroquímica y contenidos de microplásticos en las aguas subterráneas de Tuticorin, costa sureste de la India

印度东南海岸图Tuticorin地下水的水化质量和微塑料水**

Qualidade hidroquímica e níveis de micro plástico nas águas subterrâneas de Tutucorin, costa sudeste da Índia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater is essential for drinking as well as irrigation purposes. The occurrence of microplastics (MPs) in the biotic and abiotic environments is widely recorded, but little is known about MP occurrence in groundwater. This study assessed MP contamination and hydrochemical quality in a shallow and unconfined aquifer of Tuticorin, India. Water samples were collected from bore wells and open wells for MP assessment and hydrochemical analysis. All the physicochemical parameters are within defined limits, and the significant variations observed could be due to rock–water interaction and the mixing of seawater and freshwater. MPs are found in groundwater samples with an average abundance of 29.73±3.27 items per liter (range 9–39 items per liter), whereas the mean MP abundance is found to be higher in bore wells (32.9±4 items per liter) than in open wells (23.9±3.56 items per liter). The dominant type of MPs observed are fibers and the colors are red, black and white with a predominant size <3 mm. Results of a hazard assessment (polymer hazard index, PHI) on the MPs place the samples under the hazard level IV category due to the presence of high-hazard-score polymers such as polyamide, polystyrene and polyurethane. No significant correlation is noted between the groundwater quality and the quantity of MPs. The presence of MPs in the groundwater could be due to infiltration from surface sources of plastic pollution and could also result from the mixing of seawater and freshwater. Further study is necessary to identify the sources of MP contamination and to assess the capacity of MPs to infiltrate the aquifer.

Résumé

L’eau souterraine est. une ressource essentielle pour l’alimentation et l’irrigation. La présence de microplastiques (MPs) dans des environnements biotiques et abiotiques est. largement décrite, mais on sait peu de chose sur la présence de MP dans les eaux souterraines. Cette étude évalue la contamination en MP et la qualité hydrochimique d’un aquifère libre et peu profond de Tuticorin, Inde. Des échantillons d’eau ont été collectés dans des forages et puits ouverts pour la mesure des MP et les analyses hydrochimiques. Tous les paramètres physico-chimiques ont des valeurs comprises dans les limites définies de qualité, et les variations observées sont sans doute dues majoritairement aux interactions eau–roche et mélange entre eau douce et eau de mer. Les MPs ont été trouvés dans les échantillons d’eaux souterraines avec une abondance moyenne de 29.73±3.27 éléments par litre (entre 9–39 éléments par litre), avec une abondance en MP plus importante dans les forages (32.9±4 élémentspar litre) que dans les puits ouverts (23.9±3.56 éléments par litre). Les types dominants de MPs sont les fibres, de couleur rouge, noire et blanche avec une taille prédominante <3 mm. Les résultats d’une évaluation des risques (indice de risque polymère, PHI) sur les MPs positionne les échantillons dans la catégorie IV du fait de la présence de polymères comme le polyamide, polystyrène et polyuréthane avec un score de risque élevé. Il n’y a pas de corrélation significative entre la qualité des eaux souterraines et la quantité de MPs. La présence de MPs dans les eaux souterraines peut être due à une infiltration depuis des sources de pollution en surface et également résulter d’un mélange entre les eaux de mer et eaux douces. D’autres études sont nécessaires pour identifier les sources de MPs et évaluer la capacité des MPs à s’infiltrer dans l’aquifère.

Resumen

Las aguas subterráneas son esenciales para el consumo y el riego. La presencia de microplásticos (MPs) en los medios bióticos y abióticos está ampliamente registrada, pero se sabe poco sobre la presencia de MP en las aguas subterráneas. Este estudio evaluó la contaminación por MP y la calidad hidroquímica en un acuífero poco profundo y no confinado de Tuticorin, India. Se recogieron muestras de agua de pozos de sondeo y de pozos abiertos para la evaluación de la MP y el análisis hidroquímico. Todos los parámetros fisicoquímicos están dentro de los límites definidos, y las variaciones significativas observadas podrían deberse a la interacción roca–agua y a la mezcla de agua de mar y agua dulce. Los MPs se encuentran en las muestras de agua subterránea con una abundancia media de 29.73±3.27 elementos por litro (rango 9–39 elementos por litro), mientras que la abundancia media de MPs es mayor en los pozos de sondeo (32.9±4 elementos por litro) que en los pozos abiertos (23.9±3.56 elementos por litro). El tipo dominante de MPs observado son fibras y los colores son rojo, negro y blanco con un tamaño predominante <3 mm. Los resultados de la evaluación de la peligrosidad (índice de peligrosidad de los polímeros, PHI) de los MPs sitúan las muestras en la categoría de nivel de peligrosidad IV debido a la presencia de polímeros de alta puntuación de peligrosidad como la poliamida, el poliestireno y el poliuretano. No se observa ninguna correlación significativa entre la calidad de las aguas subterráneas y la cantidad de MPs. La presencia de MPs en las aguas subterráneas podría deberse a la infiltración de fuentes superficiales de contaminación por plásticos y también podría ser el resultado de la mezcla de agua de mar y agua dulce. Es necesario realizar más estudios para identificar las fuentes de contaminación por MPs y evaluar la capacidad de infiltración de MPs en el acuífero.

摘要

地下水对于饮用和灌溉目的至关重要。广泛记录了生物和非生物环境中微塑料(MPS)的发生,但对地下水中的MP的发生知之甚少。 这项研究评估了印度Tuticorin浅层含水层中的MP污染和水化学品质。从井孔和开放式井中收集水样,以进行MP评估和水化学分析。所有的物理化学参数都在定义的范围内,观察到的显著变化可能是由于水岩相互作用以及海水和淡水的混合。地下水样品中的MPs的**均丰度为29.73±3.27 项每升(9–39项每升),而在井孔的**均MP丰度(32.9±4项每升)比露天井的更高(23.9±3.56项每升)。 观察到的主要MPS是纤维,颜色为红色,黑色和白色,主要尺寸<3 mm。MPs上的危险性评估(聚合物危害指数,PHI)为危险水**IV级,这是由于存在高危险分数的聚合物,例如聚酰胺,聚苯乙烯和聚氨酯。 地下水质量与MP的数量之间没有明显的相关性。 地下水中MPs的存在可能是由于塑料污染的表面来源浸润,也可能是由于海水和淡水的混合而引起的。 对于确定MP污染的来源和评估MPs渗透含水层的能力有必要进一步的研究。

Resumo

Águas subterrâneas são essenciais para beber, assim como para irrigação. A ocorrência de micro plásticos (MPs) em ambientes bióticos e abióticos é amplamente registrada, mas pouco é conhecido sobre a ocorrência de MP em águas subterrâneas. Este estudo avaliou a contaminação por MP e a qualidade hidroquímica em um aquífero raso e não confinado em Tuticorin, Índia. Amostras de água foram coletadas em poços tubulares e poços abertos para avaliação de MP e análise hidroquímica. Todos os parâmetros físico-químico estão dentro de limites definidos, e as variações significativas observadas podem ser devido a interação água-rocha e a mistura de águas do mar e águas doce. MPs são encontrado em águas subterrâneas com uma abundância média de 29.73±3.27 itens/L (intervalo 9–39 itens/L), enquanto a abundancia média de MP é maior em poços tubulares (32.9±4 itens/L) do que em poços abertos (23.9±3.56 itens/L). O tipo dominante de MPs observados são as fibras e as cores são vermelha, preta e branca com tamanho predominante <3mm. Resultados da avaliação dos riscos (índice de perigo poliméricos, IPP) nos MPs alocaram as amostras na categoria de risco nível IV devido a presença de polímeros de alta pontuação de risco como a poliamida, poliestireno e poliuretano. Nenhuma correlação significante é notada entre a qualidade das águas subterrâneas e a quantidade de MPs. A presença de MPs nas águas subterrâneas pode ser devido a infiltração de fontes superficiais de poluição de plástico e também do resultado da mistura entre águas do mar e águas doce. Estudo mais aprofundado é necessário para identificar as fontes de contaminação de MP e para avaliar a capacidade dos MPs em infiltrar no aquífero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alfarrah N, Walraevens K (2018) Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 10(2):143. https://doi.org/10.3390/w10020143

    Article  Google Scholar 

  • APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DC, 541 pp

  • Arasu PT, Murugan A (2013) Physico chemical study on the sea water intrusion in Tuticorin coastal area. Int J Chem Tech Res 5:1824–1828

    Google Scholar 

  • Asir GGN, Ramasamy S, Altrin JSA, Madhavaraju J, Pitchaimani VS (2007) Depositional and diagenetic inferences of a shallow core near Tuticorin coast, Tamil Nadu. J Geol Soc India 70:1021–1032

    Google Scholar 

  • Bahar MM, Reza MS (2009) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of southwest Bangladesh. Environ Earth Sci 61:1065–1073

    Article  Google Scholar 

  • Barbecot F, Marlin C, Gibert E, Dever L (2000) Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France). Appl Geochem 15:791–805

    Article  Google Scholar 

  • Batayneh AT (2006) Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration: a case study of the eastern Dead Sea coastal aquifers, Jordan. Hydrogeol J 4:1277–1283

    Article  Google Scholar 

  • Ben-David EA, Habibi M, Hadad E, Hasanin M, Angel DL, Booth AM, Sabbah I (2021) Microplastic distributions in a domestic wastewater treatment plant: removal efficiency, seasonal variation and influence of sampling technique. Sci Total Environ 752:141880. https://doi.org/10.1016/j.scitotenv.2020.141880

    Article  Google Scholar 

  • Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  Google Scholar 

  • Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard GH, Hilleary MA, Eriksen M, Possingham HP, De Frond H, Gerber LR, Polidoro B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman CM (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369(6510):1515–1518. https://doi.org/10.1126/science.aba3656

    Article  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s

    Article  Google Scholar 

  • Carter MR, Gregorich EG (2007) Soil sampling and methods of analysis, 2nd edn. CRC, Boca Raton, FL. https://doi.org/10.1201/9781420005271

    Book  Google Scholar 

  • CCC & AR and TNSCCC (2015) Climate change projection (temperature) for Coimbatore. In: District-wise climate change information for the state of Tamil Nadu. Centre for Climate Change and Adaptation Research (CCC&AR), Anna University and Tamil Nadu State Climate Change Cell (TNSCCC), Department of Environment, Government of Tamil Nadu, Chennai, Tamil Nadu, India. www.tnsccc.in. Accessed Dec 2022

  • Chia RW, Lee J, Kim H, Jang J (2021) Microplastic pollution in soil and groundwater: a review. Environ Chem Lett 19:4211–4224

  • Chidambaram S, Ramanathan AL, Prasanna MV, Anandhan P, Srinivasamoorthy K, Vasudevan S (2007) Identification of hydrogeochemically active regimes in groundwaters of Erode district, Tamilnadu: a statistical approach. Asian J Water Environ Pollut 53:93–102

    Google Scholar 

  • Chidambaram S, Ramanathan AL, Prasanna MV, Karmegam U, Dheivanayagi V, Ramesh R (2010) Study on the hydrogeochemical characteristics in groundwater, post- and pre-tsunami scenario, from Portnova to Pumpuhar, southeast coast of India. Environ Monit Assess 169:553–568

    Article  Google Scholar 

  • Chin DA (2006) Water quality engineering in natural systems. Wiley, Hoboken, NJ

    Book  Google Scholar 

  • Cushing EM, Kantrowitz IH, Taylor KR (1973) Water resources of the Delmarva peninsular. US Geol Surv Prof Pap 822, 58 pp

  • Dalla Fontana G, Mossotti R, Montarsolo A (2020) Assessment of microplastics release from polyester fabrics: the impact of different washing conditions. Environ Pollut 264:113960. https://doi.org/10.1016/j.envpol.2020.113960

    Article  Google Scholar 

  • De Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC (2018) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24(4):1405–1416. https://doi.org/10.1111/gcb.14020

    Article  Google Scholar 

  • De Witte B, Devriese L, Bekaert K, Hoffman S, Vandermeersch G, Cooreman K, Robbens J (2014) Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar Pollut Bull 85(1):146–155. https://doi.org/10.1016/j.marpolbul.2014.06.006

    Article  Google Scholar 

  • Dong S, Yu Z, Huang J, Gao B (2022) Fate and transport of microplastics in soils and groundwater, chap 9. In: Gao B (ed) Emerging contaminants in soil and groundwater systems. Elsevier, pp 301–329. https://doi.org/10.1016/B978-0-12-824088-5.00001-X

    Chapter  Google Scholar 

  • Eerkes-Medrano D, Thompson R (2018) Occurrence, fate, and effect of microplastics in freshwater systems. In: Microplastic contamination in aquatic environments. https://doi.org/10.1016/B978-0-12-813747-5.00004-7

  • Eerkes-Medrano D, Leslie HA, Quinn B (2019) Microplastics in drinking water: a review and assessment. Curr Opin Environ Sci Health 7:69–75. https://doi.org/10.1016/j.coesh.2018.12.001

    Article  Google Scholar 

  • Goeppert N, Goldscheider N (2021) Experimental field evidence for transport of microplastic tracers over large distances in an alluvial aquifer. J Hazard Mater 408:24844. https://doi.org/10.1016/j.jhazmat.2020.124844

    Article  Google Scholar 

  • Golwala H, Zhang X, Iskander SM, Smith AL (2021) Solid waste: an overlooked source of microplastics to the environment. Sci Total Environ 769:144581. https://doi.org/10.1016/j.scitotenv.2020.144581

    Article  Google Scholar 

  • Handa BK (1969) Description and classification of media for hydrogeochemical investigations. In: Symposium on groundwater studies in arid and semi-arid regions, Roorkee, India, 1969

  • He D, Luo Y, Lu S, Liu M, Song Y, Lei L (2018) Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal Chem 109:163–172

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Suppl Pap 2254, 263 pp

  • Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075. https://doi.org/10.1021/es2031505

    Article  Google Scholar 

  • Horton AA, Dixon SJ (2018) Microplastics: an introduction to environmental transport processes. WIREs Water 5:e1268. https://doi.org/10.1002/wat2.1268

  • Horvat Z (2013) Building spatial data infrastructure using free and open source software. Proceedings of spatial data infrastructure, SDI DAYS 2013, Sibenik, Croatia, September 2013

  • Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, van der Ploeg M, Besseling E, Koelmans AA, Geissen V (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531. https://doi.org/10.1016/j.envpol.2016.09.096

    Article  Google Scholar 

  • Hurley RR, Nizzetto L (2018) Fate and occurrence of micro (nano) plastics in soils: knowledge gaps and possible risks. Curr Opin Environ Sci Health 1:6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  • Jeevanandam M, Kannan R, Srinivasalu S, Rammohan V (2006) Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River basin, Cuddalore District, South India. Environ Monit Assess 132(1):263–274

    Google Scholar 

  • Jeyasanta IK, Sathish MN, Patterson J, Edward JKP (2020) Macro-, meso- and microplastic debris in the beaches of Tuticorin district, southeast coast of India. Mar Pollut Bull 154:111055. https://doi.org/10.1016/j.marpolbul.2020.111055

    Article  Google Scholar 

  • Koelmans AA, Mohamed Nor NH, Hermsen E, Kooi M, Mintenig SM, De France J (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422. https://doi.org/10.1016/j.watres.2019.02.054

    Article  Google Scholar 

  • Kori R, Saxena A, Upadhayay N (2006) Groundwater quality assessment of Mandideep industrial area. National Seminar on Environmental and Development, Bhopal, India, 2006, 155 pp

  • Kumar VE, Ravikumar G, Jeyasanta KI (2018) Occurrence of microplastics in fishes from two landing sites in Tuticorin, south east coast of India. Mar Pollut Bull 135:889–894. https://doi.org/10.1016/j.marpolbul.2018.08.023

    Article  Google Scholar 

  • Leads RR, Weinstein JE (2019) Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor estuary, South Carolina, USA. Mar Pollut Bull 145:569–582. https://doi.org/10.1016/j.marpolbul.2019.06.061

    Article  Google Scholar 

  • Lee HJ, Song NS, Kim JS, Kim SK (2021) Variation and uncertainty of microplastics in commercial table salts: critical review and validation. J Hazard Mater 402:123743. https://doi.org/10.1016/j.jhazmat.2020.123743

    Article  Google Scholar 

  • Leslie HA, Van Velzen MJM, Brandsma SH, Vethaak D, Garcia-Vallejo JJ, Lamoree MH (2022) Discovery and quantification of plastic particle pollution in human blood. Environ Int 163:107199. https://doi.org/10.1016/j.envint.2022.107199

    Article  Google Scholar 

  • Li J, Yang D, Li L, Jabeen K, Shi H (2015) Microplastics in commercial bivalves from China. Environ Pollut 207:190–195. https://doi.org/10.1016/j.envpol.2015.09.018

    Article  Google Scholar 

  • Lithner D, Larsson A, Dave G (2011) Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci Total Environ 409:3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

    Article  Google Scholar 

  • Mercogliano R, Avio CG, Regoli F, Anastasio A, Colavita G, Santonicola S (2020) Occurrence of microplastics in commercial seafood under the perspective of the human food chain: a review. J Agric Food Chem 68:5296–5301. https://doi.org/10.1021/acs.jafc.0c01209

    Article  Google Scholar 

  • Mitra BK, ASABE Member (1998) Spatial and temporal variation of ground water quality in sand dune area of Aomori prefecture in Japan. https://doi.org/10.13031/2013.20673

  • Mondal NC, Singh VP, Rangarajan R (2009) Aquifer characteristics and its modelling around an industrial complex, Tuticorin, Tamil Nadu, India: a case study. J Earth Syst Sci 118:231–244

    Article  Google Scholar 

  • Mondal NC, Singh VP, Singh VS, Saxena VK (2010) Determining the interaction between groundwater and saline water through groundwater major ions chemistry. J Hydrol 388:100–111. https://doi.org/10.1016/j.jhydrol.2010.04.032

    Article  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008) Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3? Impregnated activated carbon. J Hazard Mater 150:695–702. https://doi.org/10.1016/j.jhazmat.2007.05.040

    Article  Google Scholar 

  • Moujabber EL M, Bou Samra B, Darwish T, Atallah T (2006) Comparison of different indicators for ground water contamination by sea water intrusion on the Lebanese coast. Water Resour Manag 20:161–180. https://doi.org/10.1007/s11269-006-7376-4

    Article  Google Scholar 

  • Mukate V, Panaskar DB, Wagh VM, Baker SJ (2019) Understanding the influence of industrial and agricultural land uses on groundwater quality in semiarid region of Solapur, India. Environ Dev Sustain 22:3207–3238. https://doi.org/10.1007/s10668-019-00342-3

  • Naik PK, Dehury BN, Tiwary AN (2007) Groundwater pollution around an industrial area in the coastal stretch of Maharastra state, India. Environ Monit Assess 132:207–233. https://doi.org/10.1007/s10661-006-9529-6

    Article  Google Scholar 

  • Nair IS, Rajaveni S, Schneider M, Elango L (2015) Geochemical and isotopic signatures for the identification of seawater intrusion in an alluvial aquifer. J Earth Syst Sci 124(6):1281–1291

    Article  Google Scholar 

  • O’Connor D, Pan S, Shen Z, Song Y, ** Y, Wu WM, Hou D (2019) Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environ Pollut 249:527–534. https://doi.org/10.1016/j.envpol.2019.03.092

    Article  Google Scholar 

  • Panno SV, Kelly WR, Scott J, Zheng W, McNeish RE, Holm N, Hoellein TJ, Baranski EL (2019) Microplastic contamination in karst groundwater systems. Groundwater 57:189–196. https://doi.org/10.1111/gwat.12862

    Article  Google Scholar 

  • Patterson J, Jeyasanta KI, Sathish N, Booth AM, Edward JKP (2019) Profiling microplastics in the Indian edible oyster, Magallana bilineata collected from the Tuticorin coast, Gulf of Mannar, southeastern India. Sci Total Environ 15:727–735. https://doi.org/10.1016/j.scitotenv.2019.07.063

    Article  Google Scholar 

  • Patterson J, Jeyasanta KI, Sathish N, Edward JKP, Booth AM (2020) Microplastic and heavy metal distributions in an Indian coral reef ecosystem. Sci Total Environ 20:140706. https://doi.org/10.1016/j.scitotenv.2020.140706

    Article  Google Scholar 

  • Patterson J, Jeyasanta KI, Laju RL, Booth AM, Sathish N, Edward JKP (2022) Microplastic in the coral reef environments of the Gulf of Mannar, India: characteristics, distributions, sources and ecological risks. Environ Pollut 298:118848. https://doi.org/10.1016/j.envpol.2022.118848

    Article  Google Scholar 

  • Plastics Europe (2019) Plastics: the Facts 2019—an analysis of European plastics production, demand and waste data. Plastics Europe, Frankfurt am Main, Germany

  • Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T (2020) Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 702:134455. https://doi.org/10.1016/j.scitotenv.2019.134455

    Article  Google Scholar 

  • Puthiyasekar C, Neelakandan MA, Poongothai S (2010) Heavy metal contamination in bore water due to industrial pollution and polluted and non-polluted sea water intrusion in Thoothukudi and Tirunelveli of South Tamil Nadu. Bull Environ Contam Toxicol 85:598–601

    Article  Google Scholar 

  • Ramakrishnan R, Bharath M, Manikandabharath KR, Natesan U, Srinivasalu S (2021) Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 277:130263. https://doi.org/10.1016/j.chemosphere.2021.130263

    Article  Google Scholar 

  • Rao SN, Rao PS, Reddy GV, Nagamani M, Vidyasagar G, Satyanarayana NLV (2012) Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 184:5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    Article  Google Scholar 

  • Ravichandran S (2003) Hydrological influences on the water quality trends in Tamiraparani basin, South India. Environ Monit Assess 87:293–309

    Article  Google Scholar 

  • Ravindran A, Mondal NC (2015) Geotechnical investigation for resort construction using resistivity and granulometric studies in Pattinamaruthur coast, southern India. Geotech Geol Eng 33:1–16. https://doi.org/10.1007/s10706-015-9905-5

    Article  Google Scholar 

  • Razegh N, Hamidian AH, Wu C, Zhang Y, Yang M (2021) Microplastic sampling techniques in freshwaters and sediments: a review. Environ Chem Lett 19(6):4225–4252. https://doi.org/10.1007/s10311-021-01227-6

    Article  Google Scholar 

  • Rillig MC, Ziersch L, Hempel S (2017) Microplastic transport in soil by earthworms. Sci Rep 7:1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  Google Scholar 

  • Ruser R, Sehy U, Weber A, Gutser R, Munch J (2008) Main driving variables and effect of soil management on climate or ecosystem-relevant trace gas fluxes from fields of the FAM. In: Perspectives for agroecosystem management. Elsevier, Amsterdam, pp 79–120

  • Sathish NM, Jeyasanta IK, Patterson J (2019) Abundance, characteristics, and surface degradation features of microplastics in beach sediments of five coastal areas in Tamil Nadu, India. Mar Pollut Bull 142:112–118. https://doi.org/10.1016/j.marpolbul.2019.03.037

    Article  Google Scholar 

  • Sathish MN, Jeyasanta IK, Patterson J (2020a) Occurrence of microplastics in epipelagic and mesopelagic fishes from Tuticorin, southeast coast of India. Sci Total Environ 720:137614. https://doi.org/10.1016/j.scitotenv.2020.137614

    Article  Google Scholar 

  • Sathish MN, Jeyasanta IK, Patterson J (2020b) Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India. Environ Pollut 266:115219. https://doi.org/10.1016/j.envpol.2020.115219

    Article  Google Scholar 

  • Saxena VK, Singh VS, Mondal NC, Jain SC (2003) Use of chemical parameters to delineation fresh groundwater resources in Potharlanka Island, India. Environ Geol 44:516–521

    Article  Google Scholar 

  • Schröder K, Kossel E, Lenz M (2021) Microplastic abundance in beach sediments of the Kiel Fjord, Western Baltic Sea. Environ Sci Pollut Res 28:26515–26528. https://doi.org/10.1007/s11356-020-12220-x

    Article  Google Scholar 

  • Selonen S, Dolar A, Jemec Kokalj A, Skalar T, Parramon Dolcet L, Hurley R, van Gestel CAM (2020) Exploring the impacts of plastics in soil: the effects of polyester textile fibers on soil invertebrates. Sci Total Environ 700:134451. https://doi.org/10.1016/j.scitotenv.2019.134451

    Article  Google Scholar 

  • Selvam S, Venkatramanan S (2020) Groundwater geochemistry and credentials of hydrogeochemical processes in a Tuticorin coastal region, southern Tamil Nadu, India. Bull Nepal Hydrogeol Assoc 5:47–60. https://doi.org/10.1007/s10040-018-1739-9

    Article  Google Scholar 

  • Selvam S, Mala RIJD, Muthukakshmi V (2013a) Hydrochemical analysis and evaluation of groundwater quality index in Thoothuku district, Tamilnadu, South India. Int J Adv Eng Appl 2:25–37

    Google Scholar 

  • Selvam S, Manimaran G, Sivasubramanian P (2013b) Hydrochemical characteristics and GIS-based assessment of groundwater quality in the coastal aquifers of Tuticorin Corporation, Tamilnadu, India. Appl Water Sci 31:145–159

    Article  Google Scholar 

  • Selvam S, Jesuraja K, Venkatramanan S, Priyadarsi RD, Jeyanthi Kumari V (2021) Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal South India. J Hazard Mater 402:123786. https://doi.org/10.1016/j.jhazmat.2020.123786

    Article  Google Scholar 

  • Shen M, Huang W, Chen M, Song B, Zeng G, Zhang Y (2020) (Micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change. J Clean Prod 254:120138. https://doi.org/10.1016/j.jclepro.2020.120138

    Article  Google Scholar 

  • Singaraja C (2015) GIS-based suitability measurement of groundwater resources for irrigation in Thoothukudi District, Tamil Nadu, India. Water Qual Expo Health 7:389–405. https://doi.org/10.1007/s12403-015-0159-5

    Article  Google Scholar 

  • Singaraja C (2017) Relevance of water quality index for groundwater quality evaluation: Thoothukudi District, Tamil Nadu, India. Appl Water Sci 7: 2157–2173

  • Singaraja C, Chidambaram S, Anandhan P, Prasanna MV, Thivya C, Thilagavathi R (2013) A study on the status of fluoride ion in groundwater of coastal hard rock aquifers of South India. Arab J Geosci 6:4167–4177. https://doi.org/10.1007/s12517-012-0675-6

    Article  Google Scholar 

  • Singh VS, Sarwade DV, Mondal NC, Nanadakumar MV, Singh B (2009) Evaluation of groundwater resources in a tiny Andrott Island, Union Territory of Lakshadweep, India. Environ Monit Assess 158:145–154

  • Srinivasamoorthy K, Nanthakumar C, Vasanthavigar M, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S (2011) Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India. Arab J Geosci 4:91–102. https://doi.org/10.1007/s12517-009-0076-7

    Article  Google Scholar 

  • Srinivasamoorthy K, Vasanthavigar M, Vijayaraghavan K, Sarathidasan R, Gopinath S (2013) Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: implication for quality assessment. Arab J Geosci 6:441–454. https://doi.org/10.1007/s12517-011-0351-2

    Article  Google Scholar 

  • Su L, Cai H, Kolandhasamy P, Wu C, Rochman CM, Shi H (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355. https://doi.org/10.1016/j.envpol.2017.11.075

    Article  Google Scholar 

  • Subramani T, Elango L, Damodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Environ Geol 47:1099–1110. https://doi.org/10.1007/s00254-005-1243-0

    Article  Google Scholar 

  • Subramanian S, Sujatha K, Balasubramanian A, Sambandam RT, Radhakrishnan V (1993) Hydrogeology along Tuticorin coast, Tamil Nadu, regional seminar on groundwater development problems in southern Kerala. Centre for Water Resources Development and Management Kunnamagalam, Kozhikode, India

  • Thompson RC, Swan SH, Moore CJ, Vom Saal FS (2009) Our plastic age. Philos Trans R Soc Lond B Biol Sci 364:1973–1976

    Article  Google Scholar 

  • Uheida A, Mejía HG, Abdel-Rehim M, Hamd W, Dutta J (2021) Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J Hazard Mater 406:124299. https://doi.org/10.1016/j.jhazmat.2020.124299

    Article  Google Scholar 

  • Wanner P (2021) Plastic in agricultural soils: a global risk for groundwater systems and drinking water supplies?—a review. Chemo 264:128453. https://doi.org/10.1016/j.chemosphere.2020.128453

    Article  Google Scholar 

  • Weert SV, Redondo-Hasselerharm P, Diepens N, Koelmans A (2019) Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci Total Environ 654:1040–1047. https://doi.org/10.1016/j.scitotenv.2018.11.183

    Article  Google Scholar 

  • WHO (2004) Fluoride in drinking-water: background document for development of WHO guidelines for drinking water quality, WHO, Geneva, 17 pp

    Google Scholar 

  • Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ (2020) Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 136:105411. https://doi.org/10.1016/j.envint.2019.105411

    Article  Google Scholar 

  • Xu P, Peng G, Su L, Gao Y, Gao L, Li D (2018) Microplastic risk assessment in surface waters: a case study in the Changjiang estuary, China. Mar Pollut Bull 133:647–654. https://doi.org/10.1016/j.marpolbul.2018.06.020

    Article  Google Scholar 

  • Yadav H, Sethulekshmi S, Shriwastav A (2022) Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Envir Res 214:113735. https://doi.org/10.1016/j.envres.2022.113735

  • Yao Y, Glamoclija M, Murphy A, Gao Y (2022) Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ Res 207:112142. https://doi.org/10.1016/j.envres.2021.112142

    Article  Google Scholar 

  • Yu M, Van Der Ploeg M, Lwanga EH, Yang X, Zhang S, Ma X, Ritsema CJ, Geissen V (2019) Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environ Chem 16:31–40. https://doi.org/10.1071/EN18161

    Article  Google Scholar 

  • Yu X, Ladewig S, Bao S, Toline C, Whitmire S, Chow A (2018) Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci Total Environ 613-614:298–305. https://doi.org/10.1016/j.scitotenv.2017.09.100

    Article  Google Scholar 

  • Yuan J, Xu F, Deng G, Tang Y (2018) Using stable isotopes and major ions to identify hydrogeochemical characteristics of karst groundwater in **de country, Sichuan Province. Carbonates Evaporites 33:223–234. https://doi.org/10.3390/w13030390

    Article  Google Scholar 

  • Zhang YX, Lu J, Wu J, Wang JH, Luo YM (2020) Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol Environ Saf 187:109852. https://doi.org/10.1016/j.ecoenv.2019.109852

    Article  Google Scholar 

  • Zhang J, Zou G, Wang X, Ding W, Xu L, Liu B, Mu Y, Zhu X, Song L, Chen Y (2021) Exploring the occurrence characteristics of microplastics in typical maize farmland soils with long-term plastic film mulching in northern China. Front Mar Sci 8:800087. https://doi.org/10.3389/fmars.2017.00078

    Article  Google Scholar 

  • Zhao J, Fu G, Lei K, Li Y (2011) Multivariate analysis of surface water quality in the Three Gorges Area of China and implications for water management. J Environ Sci 23:1460–1471. https://doi.org/10.1016/s1001-0742(10)60599-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Suganthi Devadason Marine Research Institute for use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamila Patterson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 412 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, J., Laju, R.L., Jeyasanta, K.I. et al. Hydrochemical quality and microplastic levels of the groundwaters of Tuticorin, southeast coast of India. Hydrogeol J 31, 167–184 (2023). https://doi.org/10.1007/s10040-022-02582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02582-6

Keywords

Navigation