Log in

Driven and undriven states of multicomponent granular gases of inelastic and rough hard disks or spheres

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Starting from a recent derivation of the energy production rates in terms of the number of translational and rotational degrees of freedom, a comparative study on different granular temperatures in gas mixtures of inelastic and rough disks or spheres is carried out. Both the homogeneous freely cooling state and the state driven by a stochastic thermostat are considered. It is found that the relaxation number of collisions per particle is generally smaller for disks than for spheres, the mean angular velocity relaxing more rapidly than the temperature ratios. In the asymptotic regime of the undriven system, the rotational-translational nonequipartition is stronger in disks than in spheres, while it is hardly dependent on the class of particles in the driven system. On the other hand, the degree of component-component nonequipartition is higher for spheres than for disks, both for driven and undriven systems. A study of the mimicry effect (whereby a multicomponent gas mimics the rotational-translational temperature ratio of a monocomponent gas) is also undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Granul. Matter 4, 57–63 (2002). https://doi.org/10.1007/s10035-002-0108-4

    Article  MATH  Google Scholar 

  2. Behringer, R.P., Chakraborty, B.: The physics of jamming for granular materials: a review. Rep. Prog. Phys. 82, 012601 (2019). https://doi.org/10.1088/1361-6633/aadc3c

    Article  ADS  Google Scholar 

  3. Bodrova, A., Levchenko, D., Brilliantov, N.: Universality of temperature distribution in granular gas mixtures with a steep particle size distribution. EPL 106, 14001 (2014). https://doi.org/10.1209/0295-5075/106/14001

    Article  ADS  Google Scholar 

  4. Brilliantov, N., Salueña, C., Schwager, T., Pöschel, T.: Transient structures in a granular gas. Phys. Rev. Lett. 93, 134301 (2004). https://doi.org/10.1103/PhysRevLett.93.134301

    Article  ADS  Google Scholar 

  5. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  6. Brilliantov, N.V., Pöschel, T., Kranz, W.T., Zippelius, A.: Translations and rotations are correlated in granular gases. Phys. Rev. Lett. 98, 128001 (2007). https://doi.org/10.1103/PhysRevLett.98.128001

    Article  ADS  Google Scholar 

  7. Clement, E., Rajchenbach, J.: Fluidization of a bidimensional powder. Europhys. Lett. 16, 133–138 (1991). https://doi.org/10.1209/0295-5075/16/2/002

    Article  ADS  Google Scholar 

  8. Cornu, F., Piasecki, J.: Granular rough sphere in a low-density thermal bath. Physica A 387, 4856–4862 (2008). https://doi.org/10.1016/j.physa.2008.03.014

    Article  ADS  Google Scholar 

  9. Dahl, S.R., Hrenya, C.M., Garzó, V., Dufty, J.W.: Kinetic temperatures for a granular mixture. Phys. Rev. E 66, 041301 (2002). https://doi.org/10.1103/PhysRevE.66.041301

    Article  ADS  Google Scholar 

  10. Duan, Y., Feng, Z.G.: Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling. Phys. Rev. E 96, 062907 (2017). https://doi.org/10.1103/PhysRevE.96.062907

    Article  ADS  Google Scholar 

  11. Dufty, J.W.: Statistical mechanics, kinetic theory, and hydrodynamics for rapid granular flow. J. Phys. Condens. Matter 12, A47–A56 (2000). https://doi.org/10.1088/0953-8984/12/8A/306

    Article  ADS  Google Scholar 

  12. Feitosa, K., Menon, N.: Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301 (2002). https://doi.org/10.1103/PhysRevLett.88.198301

    Article  ADS  Google Scholar 

  13. Garzó, V.: Granular Gaseous Flows. A Kinetic Theory Approach to Granular Gaseous Flows. Springer, Heidelberg (2019)

    Book  Google Scholar 

  14. Garzó, V., Dufty, J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706–5713 (1999). https://doi.org/10.1103/PhysRevE.60.5706

    Article  ADS  Google Scholar 

  15. Garzó, V., Dufty, J.W.: Hydrodynamics for a granular mixture at low density. Phys. Fluids 14, 1476–1490 (2002). https://doi.org/10.1063/1.1458007

    Article  ADS  MATH  Google Scholar 

  16. Garzó, V., Dufty, J.W., Hrenya, C.M.: Enskog theory for polydisperse granular mixtures. I. Navier–Stokes order transport. Phys. Rev. E 76, 031303 (2007). https://doi.org/10.1103/PhysRevE.76.031303

    Article  ADS  MathSciNet  Google Scholar 

  17. Garzó, V., Montanero, J.M.: Navier–Stokes transport coefficients of \(d\)-dimensional granular binary mixtures at low density. J. Stat. Phys. 129, 27–58 (2007). https://doi.org/10.1007/s10955-007-9357-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Garzó, V., Santos, A., Kremer, G.M.: Impact of roughness on the instability of a free-cooling granular gas. Phys. Rev. E 97, 052901 (2018). https://doi.org/10.1103/PhysRevE.97.052901

    Article  ADS  Google Scholar 

  19. Goldhirsch, I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267–293 (2003). https://doi.org/10.1146/annurev.fluid.35.101101.161114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Goldhirsch, I., Noskowicz, S.H., Bar-Lev, O.: Nearly smooth granular gases. Phys. Rev. Lett. 95, 068002 (2005). https://doi.org/10.1103/PhysRevLett.95.068002

    Article  ADS  Google Scholar 

  21. Gradenigo, G., Sarracino, A., Villamaina, D., Puglisi, A.: Non-equilibrium length in granular fluids: from experiment to fluctuating hydrodynamics. EPL 96, 14004 (2011). https://doi.org/10.1209/0295-5075/96/14004

    Article  ADS  Google Scholar 

  22. Grasselli, Y., Bossis, G., Goutallier, G.: Velocity-dependent restitution coefficient and granular cooling in microgravity. EPL 86, 60007 (2009). https://doi.org/10.1209/0295-5075/86/60007

    Article  ADS  Google Scholar 

  23. Harth, K., Kornek, U., Trittel, T., Strachauer, U., Hoöme, S., Will, K., Stannarius, R.: Granular gases of rod-shaped grains in microgravity. Phys. Rev. Lett. 110, 144102 (2013). https://doi.org/10.1103/PhysRevLett.110.144102

    Article  ADS  Google Scholar 

  24. Harth, K., Trittel, T., May, K., Wegner, S., Stannarius, R.: Three-dimensional (3D) experimental realization and observation of a granular gas in microgravity. Adv. Space Res. 55, 1901–1912 (2015). https://doi.org/10.1016/j.asr.2015.01.027

    Article  ADS  Google Scholar 

  25. Harth, K., Trittel, T., Wegner, S., Stannarius, R.: Free cooling of a granular gas of rodlike particles in microgravity. Phys. Rev. Lett. 120, 214301 (2018). https://doi.org/10.1103/PhysRevLett.120.214301

    Article  ADS  Google Scholar 

  26. Huan, C., Yang, X., Candela, D., Mair, R.W., Walsworth, R.L.: NMR experiments on a three-dimensional vibrofluidized granular medium. Phys. Rev. E 69, 041302 (2004). https://doi.org/10.1103/PhysRevE.69.041302

    Article  ADS  Google Scholar 

  27. Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding rough spheres: relaxation of translational and rotational energy. Phys. Rev. E 56, R6275–R6278 (1997). https://doi.org/10.1103/PhysRevE.56.R6275

    Article  ADS  Google Scholar 

  28. Jenkins, J.T., Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres. Phys. Fluids A 1, 2050–2057 (1989). https://doi.org/10.1063/1.857479

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485–3494 (1985). https://doi.org/10.1063/1.865302

    Article  ADS  MATH  Google Scholar 

  30. Kranz, W.T., Brilliantov, N.V., Pöschel, T., Zippelius, A.: Correlation of spin and velocity in the homogeneous cooling state of a granular gas of rough particles. Eur. Phys. J. Spec. Top. 179, 91–111 (2009). https://doi.org/10.1140/epjst/e2010-01196-0

    Article  Google Scholar 

  31. Kremer, G.M., Santos, A., Garzó, V.: Transport coefficients of a granular gas of inelastic rough hard spheres. Phys. Rev. E 90, 022205 (2014). https://doi.org/10.1103/PhysRevE.90.022205

    Article  ADS  Google Scholar 

  32. Lasanta, A., Reyes, F.V., Garzó, V., Santos, A.: Intruders in disguise: Mimicry effect in granular gases (2019). ar**v:1903.10807

    Article  ADS  Google Scholar 

  33. Luding, S.: Granular materials under vibration: simulations of rotating spheres. Phys. Rev. E 52, 4442–4457 (1995). https://doi.org/10.1103/PhysRevE.52.4442

    Article  ADS  Google Scholar 

  34. Luding, S., Huthmann, M., McNamara, S., Zippelius, A.: Homogeneous cooling of rough, dissipative particles: theory and simulations. Phys. Rev. E 58, 3416–3425 (1998). https://doi.org/10.1103/PhysRevE.58.3416

    Article  ADS  Google Scholar 

  35. Lun, C.K.K., Bent, A.A.: Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335–353 (1994). https://doi.org/10.1017/S0022112094003356

    Article  ADS  Google Scholar 

  36. Lun, C.K.K., Savage, S.B.: A simple kinetic theory for granular flow of rough, inelastic, spherical particles. J. Appl. Mech. 54, 47–53 (1987). https://doi.org/10.1115/1.3172993

    Article  ADS  MATH  Google Scholar 

  37. Maaß, C.C., Isert, N., Maret, G., Aegerter, C.M.: Experimental investigation of the freely cooling granular gas. Phys. Rev. Lett. 100, 248001 (2008). https://doi.org/10.1103/PhysRevLett.100.248001

    Article  ADS  Google Scholar 

  38. Megías, A., Santos, A.: Energy production rates of multicomponent granular gases of rough particles. A unified view of hard-disk and hard-sphere systems (2018). ar**v:1809.02327

  39. Mitarai, N., Hayakawa, H., Nakanishi, H.: Collisional granular flow as a micropolar fluid. Phys. Rev. Lett. 88, 174301 (2002). https://doi.org/10.1103/PhysRevLett.88.174301

    Article  ADS  Google Scholar 

  40. Montanero, J.M., Garzó, V.: Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Granul. Matter 4, 17–24 (2002). https://doi.org/10.1007/s10035-001-0097-8

    Article  MATH  Google Scholar 

  41. Montanero, J.M., Santos, A.: Computer simulation of uniformly heated granular fluids. Granul. Matter 2, 53–64 (2000). https://doi.org/10.1007/s100350050035

    Article  Google Scholar 

  42. Moon, S.J., Swift, J.B., Swinney, H.L.: Role of friction in pattern formation in oscillated granular layers. Phys. Rev. E 69, 031301 (2004). https://doi.org/10.1103/PhysRevE.69.031301

    Article  ADS  Google Scholar 

  43. Puglisi, A., Gnoli, A., Gradenigo, G., Sarracino, A., Villamaina, D.: Structure factors in granular experiments with homogeneous fluidization. J. Chem. Phys. 136, 014704 (2012). https://doi.org/10.1063/1.3673876

    Article  ADS  Google Scholar 

  44. Ramírez, R., Pöschel, T., Brilliantov, N.V., Schwager, T.: Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60, 4465–4472 (1999). https://doi.org/10.1103/PhysRevE.60.4465

    Article  ADS  Google Scholar 

  45. Saitoh, K., Bodrova, A., Hayakawa, H., Brilliantov, N.V.: Negative normal restitution coefficient found in simulation of nanocluster collisions. Phys. Rev. Lett. 105, 238001 (2010). https://doi.org/10.1103/PhysRevLett.105.238001

    Article  ADS  Google Scholar 

  46. Santos, A.: Homogeneous free cooling state in binary granular fluids of inelastic rough hard spheres. AIP Conf. Proc. 1333, 128–133 (2011). https://doi.org/10.1063/1.3562637

    Article  ADS  Google Scholar 

  47. Santos, A.: Interplay between polydispersity, inelasticity, and roughness in the freely cooling regime of hard-disk granular gases. Phys. Rev. E 98, 012804 (2018). https://doi.org/10.1103/PhysRevE.98.012904

    Article  ADS  Google Scholar 

  48. Santos, A., Kremer, G.M., Garzó, V.: Energy production rates in fluid mixtures of inelastic rough hard spheres. Prog. Theor. Phys. Suppl. 184, 31–48 (2010). https://doi.org/10.1143/PTPS.184.31

    Article  ADS  MATH  Google Scholar 

  49. Santos, A., Kremer, G.M., dos Santos, M.: Sonine approximation for collisional moments of granular gases of inelastic rough spheres. Phys. Fluids 23, 030604 (2011). https://doi.org/10.1063/1.3558876

    Article  ADS  Google Scholar 

  50. Scholz, C., Pöschel, T.: Velocity distribution of a homogeneously driven two-dimensional granular gas. Phys. Rev. Lett. 118, 198003 (2017). https://doi.org/10.1103/PhysRevLett.118.198003

    Article  ADS  Google Scholar 

  51. Schwager, T., Becker, V., Pöschel, T.: Coefficient of tangential restitution for viscoelastic spheres. Eur. Phys. J. E 27, 107–114 (2008). https://doi.org/10.1140/epje/i2007-10356-3

    Article  Google Scholar 

  52. Serero, D., Goldhirsch, I., Noskowicz, S.H., Tan, M.L.: Hydrodynamics of granular gases and granular gas mixtures. J. Fluid Mech. 554, 237–258 (2006). https://doi.org/10.1017/S0022112006009281

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Sorace, C.M., Louge, M.Y., Crozier, M.D., Law, V.H.C.: High apparent adhesion energy in the breakdown of normal restitution for binary impacts of small spheres at low speed. Mech. Res. Commun. 36, 364–368 (2009). https://doi.org/10.1016/j.mechrescom.2008.10.009

    Article  MATH  Google Scholar 

  54. Tatsumi, S., Murayama, Y., Hayakawa, H., Sano, M.: Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521–539 (2009). https://doi.org/10.1017/S002211200999231X

    Article  ADS  MATH  Google Scholar 

  55. Uecker, H., Kranz, W.T., Aspelmeier, T., Zippelius, A.: Partitioning of energy in highly polydisperse granular gases. Phys. Rev. E 80, 041303 (2009). https://doi.org/10.1103/PhysRevE.80.041303

    Article  ADS  Google Scholar 

  56. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1, 57–64 (1998). https://doi.org/10.1007/s100350050009

    Article  Google Scholar 

  57. van der Meer, D., Reimann, P.: Temperature anisotropy in a driven granular gas. Europhys. Lett. 74, 384–390 (2006). https://doi.org/10.1209/epl/i2005-10552-9

    Article  ADS  Google Scholar 

  58. Vega Reyes, F., Lasanta, A., Santos, A., Garzó, V.: Energy nonequipartition in gas mixtures of inelastic rough hard spheres: the tracer limit. Phys. Rev. E 96, 052901 (2017). https://doi.org/10.1103/PhysRevE.96.052901

    Article  ADS  Google Scholar 

  59. Vega Reyes, F., Lasanta, A., Santos, A., Garzó, V.: Thermal properties of an impurity immersed in a granular gas of rough hard spheres. EPJ Web Conf. 140, 04003 (2017). https://doi.org/10.1051/epjconf/201714004003

    Article  Google Scholar 

  60. Vega Reyes, F., Santos, A.: Steady state in a gas of inelastic rough spheres heated by a uniform stochastic force. Phys. Fluids 27, 113301 (2015). https://doi.org/10.1063/1.4934727

    Article  ADS  Google Scholar 

  61. Vega Reyes, F., Santos, A., Kremer, G.M.: Role of roughness on the hydrodynamic homogeneous base state of inelastic spheres. Phys. Rev. E 89, 020202(R) (2014). https://doi.org/10.1103/PhysRevE.89.020202

    Article  Google Scholar 

  62. Wildman, R.D., Parker, D.J.: Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  63. Williams, D.R.M., MacKintosh, F.C.: Driven granular media in one dimension: correlations and equation of state. Phys. Rev. E 54, R9–R12 (1996). https://doi.org/10.1103/PhysRevE.54.R9

    Article  ADS  Google Scholar 

  64. Yang, X., Huan, C., Candela, D., Mair, R.W., Walsworth, R.L.: Measurements of grain motion in a dense, three-dimensional granular fluid. Phys. Rev. Lett. 88, 044301 (2002). https://doi.org/10.1103/PhysRevLett.88.044301

    Article  ADS  Google Scholar 

  65. Zamankhan, P., Tafreshi, H.V., Polashenski, W., Sarkomaa, P., Hyndman, C.L.: Shear induced diffusive mixing in simulations of dense Couette flow of rough, inelastic hard spheres. J. Chem. Phys. 109, 4487–4491 (1998). https://doi.org/10.1063/1.477076

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of A.S. has been supported by the Agencia Estatal de Investigación (Spain) through Grant No. FIS2016-76359-P and by the Junta de Extremadura (Spain) through Grant No. GR18079, both partially financed by Fondo Europeo de Desarrollo Regional funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megías, A., Santos, A. Driven and undriven states of multicomponent granular gases of inelastic and rough hard disks or spheres. Granular Matter 21, 49 (2019). https://doi.org/10.1007/s10035-019-0901-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0901-y

Keywords

Navigation