Log in

A novel reinforced concrete-like composite solid-state electrolyte with enhanced performance for all-solid-state lithium batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Due to superior energy density and safety, all-solid-state lithium-ion batteries (ASSLBs) are considered to be the perfect substitute for lithium-ion batteries. As the most important component of ASSLBs, solid-state electrolytes (SSEs) are an important part of promoting the commercial development of ASSLBs. However, low ionic conductivity and poor oxidation stability of SSEs are the main obstacles to their industrial preparation. Here, we chose garnet Li7La3Zr2O12 ceramics to prepare a three-dimensional (3D) rebar-like structure nanofiber framework by electrospinning, and infiltrating a polyethylene oxide (PEO) polymer matrix to form the reinforced concrete-like composite solid electrolytes (3D RC-CSEs). The regularly arranged and interconnected framework endows the 3D RC-CSEs with a fast ion transport channel (ion conductivity is 0.23 mS cm−1 at 30 ℃), the lithium-ion transference number is up to 0.47 and electrochemical stability window of 4.9 V (vs. Li+/Li). The Li|3D RC-CSEs|Li battery can achieve a stable cycle for 3200 h at 0.2 mA cm−2. The LFP|3D RC-CSEs|Li battery shows an excellent rate performance (discharge specific capacity of 123.1 mAh g−1 at 3 C) and great cycling performance (discharge specific capacity of 123.1 mAh g−1 after 600 cycles at 1 C) at 60 ℃. In addition, the 3D RC-CSEs showed that Young's modulus is 9.6 times of the PEO-LiTFSI. The unique structural design provides a practical strategy for commercial development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Wang Q, ** P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224

    Article  CAS  Google Scholar 

  4. Schnell J, Günther T, Knoche T, Vieider C, Köhler L, Just A, Keller M, Passerini S, Reinhart G (2018) All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production. J Power Sources 382:160–175

    Article  CAS  Google Scholar 

  5. Manthiram A, Yu X, Wang S (2017) Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2:1–16

    Article  Google Scholar 

  6. Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L (2016) Shao-Horn, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116:140–162

    Article  CAS  PubMed  Google Scholar 

  7. Goodenough JB, Singh P (2015) Review-solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162:A2387–A2392

    Article  CAS  Google Scholar 

  8. Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117:10403–10473

    Article  CAS  PubMed  Google Scholar 

  9. Guo Y, Li H, Zhai T (2017) Reviving lithium-metal anodes for next-generation high-energy batteries. Adv Mater 29:1–25

    Article  ADS  Google Scholar 

  10. Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C (2020) Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 16:1902813

    Article  CAS  Google Scholar 

  11. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D 41:3715–3725

    Article  Google Scholar 

  12. Saxena AG, Kamaraj SK, Caballero-Briones F (1998) Polymer electrolytes for lithium ion batteries. Adv Mater 10(6):439–448

    Article  Google Scholar 

  13. Liu LH, Lyu J, Mo JS, Peng P, Li JG, Jiang B, Chu LH, Li MC (2020) Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Sci China Mater 65:703–718

    Article  Google Scholar 

  14. Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136:7395–7402

    Article  CAS  PubMed  Google Scholar 

  15. Zheng Q, Ma L, Khurana R, Archer LA, Coates GW (2016) Structure-property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem Sci 7:6832–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niitani T, Shimada M, Kawamura K, Dokko K, Rho YH, Kanamura K (2005) Synthesis of Li+ Ion conductive PEO-PSt block copolymer electrolyte with microphase separation structure. Electrochem Solid-State Lett 8:A385–A388

    Article  CAS  Google Scholar 

  17. Donald R, Sadoway Huang B, Patrick E (2001) Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J Power Sources 97(8):621–623

    Google Scholar 

  18. Devaux D, Glé D, Phan TNT, gigmes D, Giroud E, Deschamps M, Denoyel R, Bouchet R (2015) Optimization of block copolymer electrolytes for lithium metal batteries. Chem Mater 27:4682–4692

    Article  CAS  Google Scholar 

  19. Cheruvally G, Kim JK, Choi JW, Ahn JH, Shin YJ, Manuel J, Raghavan P, Kim KW, Ahn HJ, Choi DS (2007) Electrospun Polymer membrane activated with room temperature ionic liquid: novel polymer electrolytes for lithium batteries. J Power Sources 172:863–869

    Article  CAS  Google Scholar 

  20. Zhang M, Zhang J, Yang J, Du X, Cui G (2019) Polymer electrolyte enlightens wide-temperature 4.45V-class LiCoO2/Li metal battery. J Electrochem Soc 166:A2313–A2321

    Article  CAS  Google Scholar 

  21. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5:63–69

    Article  CAS  Google Scholar 

  22. Liu YT, Tao XY, Wang Y, Jiang C, Ma C, Sheng O, Lu GX, Lou XW (2022) Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375:739–745

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Hong JC, Dong WK, Park JW, Park JH, Lee YJ, Ha YC, Lee SM, Yoon SY, Kim BG (2022) In situ formed Ag-Li Intermetallic layer for stable cycling of all-solid-state lithium batteries. Adv Sci 9:2270001

    Article  Google Scholar 

  24. Munakata H, Wakasugi, Jungo, Kanamura, Kiyoshi (2017) Effect of gold layer on interface resistance between lithium metal anode and Li6.25Al0.25La3Zr2O12 solid electrolyte. J Electrochem Soc 164:A1022–A1025

    Article  Google Scholar 

  25. Yang CP, **e H, ** WW, F K, Liu BY, Rao JC, Dai JQ, Wang CW, Pastel G, Hu LB (2019) An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv Mater 31:1–7

    ADS  CAS  Google Scholar 

  26. Lu Y, Huang X, Yadong R, Wang Q, Rui K, Yang J, Wen Z (2018) An in situ element permeation constructed high endurance Li-LLZO interface at high current densities. J Mater Chem A 6:18853–18858

    Article  CAS  Google Scholar 

  27. Zhao N, Fang R, He MH, Chen C, Li YQ, Bi ZJ, Guo XX (2018) Cycle stability of lithium/garnet/lithium cells with different intermediate layers. Rare Met 37:473–479

    Article  CAS  Google Scholar 

  28. Cheng Z, Liu T, Zhao B, Shen F, ** H, Han X (2021) Recent advances in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. Energy Storage Mater 34:388–416

    Article  Google Scholar 

  29. Cai M, ** J, **u T, Song Z, Badding ME, Wen Z (2022) In-situ constructed lithium-salt lipophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater 47:61–69

    Article  Google Scholar 

  30. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G (2018) Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater 15:46–52

    Article  Google Scholar 

  31. Wu MJ, Liu D, Qu DY, **e ZZ, Li JS, Lei JH, Tang HL (2020) 3D coral-like LLZO/PVDF composite electrolytes with enhanced ionic conductivity and mechanical flexibility for solid-state lithium batteries. Acs Appl Mater Inter 12:52652–52659

    Article  CAS  Google Scholar 

  32. Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci USA 113:7094–7099

    Article  ADS  CAS  PubMed  Google Scholar 

  33. **e H, Yang C, Ren Y, Xu S, Hamann TR, McOwen DW, Wachsman ED, Hu L (2021) Amorphous-carbon-coated 3D solid electrolyte for an electro-chemomechanically stable lithium metal anode in solid-state batteries. Nano Lett 21:6163–6170

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Gao L, Luo S, Li J, Cheng B, Kang W, Deng NJESM (2021) Core-shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries. Energy Storage Mater 43:266–274

    Article  Google Scholar 

  35. Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2018) PEO/garnet composite electrolytes for solid-state lithium batteries: from ceramic-in-polymer to polymer-in-ceramic. Nano Energy 46:176–184

    Article  CAS  Google Scholar 

  36. Gao LW, Deng N (2022) Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-ion conduction in composite polymer electrolytes. Energy & Environmental Materials 6:e12272

    Article  Google Scholar 

  37. Pan P, Zhang M, Cheng Z, Jiang L, Mao J, Ni C, Chen Q, Zeng Y, Hu Y, Fu K (2022) Garnet ceramic fabric-reinforced flexible composite solid electrolyte derived from silk template for safe and long-term stable all-solid-state lithium metal batteries. Energy Storage Mater 47:279–287

    Article  Google Scholar 

  38. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206:28–32

    Article  CAS  Google Scholar 

  39. Wang X, Huang S, Guo K, Min Y, Xu Q (2022) Directed and continuous interfacial channels for optimized ion transport in solid-state electrolytes. Adv Funct Mater 32:2206976

    Article  CAS  Google Scholar 

  40. Liu M, Zhang SG, van Eck ERH, Wang C, Ganapathy S, Wagemaker M (2022) Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat Nanotechnol 17:959–967

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Zagórski J, López del Amo JM, Cordill MJ, Aguesse F, Buannic L, Llordés A (2019) Garnet-Polymer Composite electrolytes: New insights on Local Li-Ion dynamics and electrodeposition stability with li metal anodes. Acs Appl Energ Mater 2:1734–1746

    Article  Google Scholar 

  42. Ding Y, Shen X, Zeng J, Wang X, Peng L, Zhang P, Zhao J (2018) Pre-irradiation grafted single lithium-ion conducting polymer electrolyte based on poly(vinylidene fluoride). Solid State Ion 323:16–24

    Article  CAS  Google Scholar 

  43. Li J, Deepak FL (2022) Situ kinetic observations on Crystal Nucleation and Growth. Chem Rev 122:16911–16982

    Article  CAS  PubMed  Google Scholar 

  44. Liang H, Wang L, Wang A, Song Y, Wu Y, Yang Y, He X (2023) Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review. Nanomicro Lett 15:42

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma Y, Wan J, Yang Y, Ye Y, **ao X, Boyle DT, Burke W, Huang Z, Chen H, Cui Y, Yu Z, Oyakhire ST, Cui Y (2022) Scalable, ultrathin, and high-temperature‐resistant solid polymer electrolytes for energy‐dense lithium metal batteries. Adv Energy Mater 12:2103720

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Tian** (No. 20JCYBJC00230). The authors are thankful to the Analytical & Testing Center of Tiangong University for the technical support in XRD, SEM, and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Ruan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 454 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Y., Feng, J., Huang, X. et al. A novel reinforced concrete-like composite solid-state electrolyte with enhanced performance for all-solid-state lithium batteries. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05820-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05820-x

Keywords

Navigation