Log in

Electrochemical detection of creatinine using Au–Ag bimetallic nanoparticles

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The adsorption of creatinine has been examined at Au–Ag bimetallic nanoparticles. In phosphate buffer without a supporting electrolyte, both metals were oxidised within a single voltammetric peak. The oxidation peak height was inversely proportional to the creatinine concentration, indicating adsorption of the species onto the particles. The adsorption followed a Langmuir isotherm with a free energy of adsorption estimated at − 14.4 kJ mol−1. The adsorption was found to be selective in the presence of interferents such as glucose, glycine, and urea. Using the decrease in peak height creatinine could be calibrated with an LOD of 0.8 mM (defined as 3.3σ/S where σ is the standard deviation of the blank and S is the calibration gradient) and a sensitivity of 137.0 µA mM−1 (r2 = 0.998). Recoveries of creatinine in artificial urine were in the range 92.8 to 104.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Data recorded in this study are available from the corresponding author on reasonable request.

References

  1. Pundir CS, Kumar P, Jaiwal R (2019) Biosensing methods for determination of creatinine: a review. Biosens Bioelectron 126(1 Feb):707–724

  2. Kalaivani GJ, Suja SK (2019) Enzyme-less sensing of the kidney dysfunction biomarker creatinine using an inulin based bio-nanocomposite. New J Chem 43(15):5914–5924

    Article  CAS  Google Scholar 

  3. Narimani R, Esmaeili M, Rasta SH, Khosroshahi HT, Mobed A (2021) Trend in creatinine determining methods: conventional methods to molecular-based methods. Anal Sci Adv 2(5–6):308–325

    Article  CAS  Google Scholar 

  4. Jaffe M (1886) Ueber den Niederschlag, welchen Pikrinsäure in normalem Harn erzeugt und über eine neue Reaction des Kreatinins. Z Physiol Chem 10:391–400

    Google Scholar 

  5. Sivasankaran U, Jos TC, Girish Kumar K (2018) Selective recognition of creatinine – development of a colorimetric sensor. Anal Biochem 544:1–6

    Article  CAS  PubMed  Google Scholar 

  6. Duong HD, Rhee JI (2017) Development of ratiometric fluorescent biosensors for the determination of creatine and creatinine in urine. Sensors 17(11):2570

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prabhu SN, Mukhopadhyay SC, Gooneratne CP, Davidson AS, Liu G (2020) Molecularly imprinted polymer-based detection of creatinine towards smart sensing. Med Devices Sensors 3(6):e10133

    Article  CAS  Google Scholar 

  8. Hanif S, John P, Gao W, Saqib M, Qi L, Xu G (2016) Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens Bioelectron 75:347–351

    Article  CAS  PubMed  Google Scholar 

  9. Tsikas D, Wolf A, Mitschke A, Gutzki FM, Will W, Bader M (2010) GC-MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J Chromatogr B Analyt Technol Biomed Life Sci 878(27):2582–2592

    Article  CAS  PubMed  Google Scholar 

  10. Viswanath KB, Devasenathipathy R, Wang SF, Vasantha VS (2017) A new route for the enzymeless trace level detection of creatinine based on reduced graphene oxide/silver nanocomposite biosensor. Electroanalysis 29(2):559–565

    Article  CAS  Google Scholar 

  11. Cánovas R, Cuartero M, Crespo GA (2019) Modern creatinine (bio)sensing: challenges of point-of-care platforms. Biosens Bioelectron 130:110–124

    Article  PubMed  Google Scholar 

  12. Busono P (2015) Development of amperometric biosensor for creatinine detection. IFMBE Proc 52:134–137

    Article  Google Scholar 

  13. Killard AJ, Smyth MR (2000) Creatinine biosensors: principles and designs. Trends Biotechnol 18(10):433–437

    Article  CAS  PubMed  Google Scholar 

  14. Ozansoy Kasap B, Marchenko SV, Soldatkin OO, Dzyadevych SV, Akata Kurc B (2017) Biosensors based on nano-gold/zeolite-modified ion selective field-effect transistors for creatinine detection. (2017). Nanoscale Res Lett 12:162

  15. Income K, Ratnarathorn N, Khamchaiyo N, Srisuvo C, Ruckthong L, Dungchai W (2019) Disposable nonenzymatic uric acid and creatinine sensors using µPAD coupled with screen-printed reduced graphene oxide-gold nanocomposites. Int J Anal Chem 2019:3457247

    Article  PubMed  PubMed Central  Google Scholar 

  16. Singh P, Mandal S, Roy D, Chanda N (2021) Facile detection of blood creatinine using binary copper–iron oxide and rGO-based nanocomposite on 3D printed Ag-electrode under POC settings. ACS Biomater Sci Eng 7(7):3446–3458

    Article  CAS  PubMed  Google Scholar 

  17. Ortiz M, Botero ML, Fragoso A, O’Sullivan CK (2020) Amperometric detection of creatinine in clinical samples based on gold electrode arrays fabricated using printed circuit board technology. Electroanalysis 32(12):3054–3059

    Article  CAS  Google Scholar 

  18. Raveendran J, Resmi PE, Ramachandran T, Nair BG, Satheesh Babu TG (2017) Fabrication of a disposable non-enzymatic electrochemical creatinine sensor. Sens Actuators, B Chem 243:589–595

    Article  CAS  Google Scholar 

  19. Kumar V, Hebbar S, Kalam R, Panwar S, Prasad S, Srikanta SS, Krishnaswamy PR, Bhat N (2018) Creatinine-iron complex and its use in electrochemical measurement of urine creatinine. IEEE Sens J 18(2):830–836

    Article  CAS  Google Scholar 

  20. Fekry AM, Abdel-Gawad SA, Tammam RH, Zayed MA (2020) An electrochemical sensor for creatinine based on carbon nanotubes/folic acid /silver nanoparticles modified electrode. Measurement 163:107958

    Article  Google Scholar 

  21. Dhara K, Mahapatra DR (2019) Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: a review. J Mater Sci 54(19):12319–12357

    Article  CAS  Google Scholar 

  22. Wu J, Li P, Pan Y-T, Warren S, Yin X, Yang H (2012) Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem Soc Rev 41(24):8066–8074

    Article  CAS  PubMed  Google Scholar 

  23. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46

    Article  PubMed  Google Scholar 

  24. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, De Wael K (2016) Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosensors 4(3):16

    Article  Google Scholar 

  25. Karabiberoğlu SU, Koçak CC, Koçak S, Dursun Z (2016) Polymer film supported bimetallic Au–Ag catalysts for electrocatalytic oxidation of ammonia borane in alkaline media. Nano-Micro Lett 8(4):358–370

    Article  Google Scholar 

  26. Loiseau A, Zhang L, Hu D, Salmain M, Mazouzi Y, Flack R, Liedberg B, Boujday S (2019) Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl Mater Interfaces 11(50):46462–46471

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Han L, Hou C, Li C, Lang Q, Han L, Liu A (2015) Novel glucose sensor with Au@Ag heterogeneous nanorods based on electrocatalytic reduction of hydrogen peroxide at negative potential. J Electroanal Chem 742:84–89

    Article  CAS  Google Scholar 

  28. Chutipongtanate S, Thongboonkerd V (2010) Systematic comparisons of artificial urine formulas for in vitro cellular study. Anal Biochem 402(1):110–112

    Article  CAS  PubMed  Google Scholar 

  29. Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, De Wael K (2016) Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosens 4(3):16

    Article  Google Scholar 

  30. Tang D, Yuan R, Chai Y (2006) Ligand-functionalized core/shell Ag@Au nanoparticles label-free amperometric immun-biosensor. Biotechnol Bioeng 94(5):996–1004

    Article  CAS  PubMed  Google Scholar 

  31. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2(11):1235–1237

    Article  CAS  Google Scholar 

  32. Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848

    Article  CAS  Google Scholar 

  33. Elemike EE, Onwudiwe DC, Fayemi OE, Botha TL (2019) Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl Phys A 125(1):42

    Article  Google Scholar 

  34. Plowman BJ, Sidhureddy B, Sokolov SV, Young NP, Chen A, Compton RG (2016) Electrochemical behavior of gold–silver alloy nanoparticles. ChemElectroChem 3(7):1039–1043

    Article  CAS  Google Scholar 

  35. Malathi S, Ezhilarasu T, Abiraman T, Balasubramanian S (2014) One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carbohydr Polym 111:734–743

    Article  CAS  PubMed  Google Scholar 

  36. Li X, Chen Q, McCue I, Snyder J, Crozier P, Erlebacher J, Sieradzki K (2014) Dealloying of noble-metal alloy nanoparticles. Nano Lett 14(5):2569–2577

    Article  CAS  PubMed  Google Scholar 

  37. Kalasin S, Sangnuang P, Khownarumit P, Tang IM, Surareungchai W (2020) Evidence of Cu(I) coupling with creatinine using cuprous nanoparticles encapsulated with polyacrylic acid gel-Cu(II) in facilitating the determination of advanced kidney dysfunctions. ACS Biomater Sci Eng 6(2):1247–1258

    Article  CAS  PubMed  Google Scholar 

  38. Farkhari N, Abbasian S, Moshaii A, Nikkhah M (2016) Mechanism of adsorption of single and double stranded DNA on gold and silver nanoparticles: investigating some important parameters in bio-sensing applications. Coll Surf B Biointerface 148:657–664

    Article  CAS  Google Scholar 

  39. Sohn S, Kim D (2005) Modification of Langmuir isotherm in solution systems—definition and utilization of concentration dependent factor. Chemosphere 58(1):115–123

    Article  CAS  PubMed  Google Scholar 

  40. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. John Wiley & Sons Inc., New York p, p 566

    Google Scholar 

  41. Chan EWL, Yousaf MN, Mrksich M (2000) Understanding the role of adsorption in the reaction of cyclopentadiene with an immobilized dienophile. J Phys Chem A 104(41):9315–9320

    Article  CAS  Google Scholar 

  42. Naito K, Iida K, Takada K (2019) Adsorption kinetics and thermodynamics of 2-aminoethanethiol onto a polycrystalline gold electrode determined by cyclic voltammetry of reductive desorption. Electrochemistry 87(2):114–118

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. N. is grateful for a post-doctoral fellowship from King Mongkut’s University of Technology Thonburi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithran Somasundrum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 416 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nene, A., Phanthong, C., Surareungchai, W. et al. Electrochemical detection of creatinine using Au–Ag bimetallic nanoparticles. J Solid State Electrochem 27, 2869–2875 (2023). https://doi.org/10.1007/s10008-023-05571-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05571-1

Keywords

Navigation