Log in

Facile synthesis of layered reduced graphene oxide–copper sulfide (rGO-CuS) hybrid electrode for all solid-state symmetric supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A straightforward process for synthesis of hybrid porous electrode material composed of reduced graphene oxide (rGO) and copper sulfide (CuS) with layered structure on the stainless steel substrate is developed. As-synthesized hybrid electrode shows hexagonal crystal structure of CuS with 77 m2 gm−1 specific surface area and 22 nm average pore size. The specific capacitance obtained with rGO-CuS5 hybrid electrode is 1201 F g−1 at the sweep rate of 5 mV s−1 in 1 M LiClO4 aqueous electrolyte. The majority of charge stored by diffusion-controlled process indicates benefits of layered structures for solid-state energy storage. The rGO-CuS5-based hybrid symmetric supercapacitor delivers a specific capacitance (Cs) as high as 109 F g−1 at a sweep rate of 5 mV s−1 with polyvinyl alcohol (PVA)-LiClO4 gel electrolyte. Also, the specific energy of 44 Wh kg−1 and specific power of 1.4 kW kg−1 with 87% stability after 6000 cycles at an applied current of 5 mA are obtained. The simple process of synthesis of layered hybrid electrode material for flexible supercapacitor promises its use in smart textile and wearable electronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dubal D, Kim J, Kim Y, Holze R, Lokhande C, Kim W (2014) Supercapacitors based on flexible substrates: an overview. Energy Technol 2(4):325–341

    Article  Google Scholar 

  2. Zhi M, **ang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88

    Article  CAS  Google Scholar 

  3. González A, Goikolea E, Barrena J, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  4. Zhao Y, Ran W, He J, Huang Y, Liu Z, Liu W, Tang Y, Zhang L, Gao D, Gao F (2015) High-performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability. Small 11(11):1310–1319

    Article  CAS  Google Scholar 

  5. Zhang H, Chhowalla M, Liu Z (2018) 2D nanomaterials: graphene and transition metal dichalcogenides. Chem Soc Rev 47(9):3015–3017

    Article  CAS  Google Scholar 

  6. Pandit B, Dubal D, Gómez-Romero P, Kale B, Sankapal B (2017) V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7(1):43430

    Article  Google Scholar 

  7. Hou R, Gund G, Qi K, Nakhanivej P, Liu H, Li F, **a BY, Park H (2019) Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Mater 19:212–241

    Article  Google Scholar 

  8. Luan F, Wang G, Ling Y, Lu X, Wang H, Tong Y, Liu X, Li Y (2013) High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 17:7984–7990

    Article  Google Scholar 

  9. Eigler S, Feicht P (2018) Defects in graphene oxide as structural motive. ChemNanoMat 4:244–252

    Article  Google Scholar 

  10. Patil A, Lokhande A, Chodankar N, Shinde P, Kim J, Lokhande C (2017) Interior design engineering of CuS architecture alteration with rise in reaction bath temperature for high performance symmetric flexible solid state supercapacitor. J Ind Eng Chem 46:91–102

    Article  CAS  Google Scholar 

  11. Naveen A, Selladurai S (2015) Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173:290–301

    Article  CAS  Google Scholar 

  12. Johra F, Jung W (2015) RGO–TiO2–ZnO composites: synthesis, characterization, and application to photocatalysis. Appl Catal A 491:52–57

    Article  CAS  Google Scholar 

  13. He D, Xue P, Song D, Qu J, Lai C (2017) Tri-functional copper sulfide as sulfur carrier for high-performance lithium-sulfur batteries. J Electrochem Soc 164(7):A1499–A1502

    Article  CAS  Google Scholar 

  14. Bollero A, Grossberg M, Asenjo B, Gutiérrez M (2009) CuS-based thin films for architectural glazing applications produced by co-evaporation: morphology, optical and electrical properties. Surf Coat Technol 204(5):593–600

    Article  CAS  Google Scholar 

  15. Ganesan P, Sivanantham A, Shanmugam S (2016) Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis. J Mater Chem A 4(42):16394–16402

    Article  CAS  Google Scholar 

  16. **ao F, Yang S, Zhang Z, Liu H, **ao J, Wan L, Luo J, Wang S, Liu Y (2015) Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci Rep 5(1):9359

    Article  CAS  Google Scholar 

  17. Rosenthal D, Ruta M, Schlogl R, Kiwi-Minsker L (2010) Combined XPS and TPD study of oxygen-functionalized carbon nanofibers grown on sintered metal fibers. Carbon 48(6):1835–1843

    Article  CAS  Google Scholar 

  18. Han J, Liu W, Zhang T, Xue K, Li W, Jiao F, Qin W (2017) Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature. Sci Rep 7(1):42536

    Article  CAS  Google Scholar 

  19. Bulakhe R, Sahoo S, Nguyen T, Lokhande C, Roh C, Lee YR, Shim J (2016) Chemical synthesis of 3D copper sulfide with different morphologies for high performance supercapacitors application. RSC Adv 6(18):14844–14851

    Article  CAS  Google Scholar 

  20. Tang H, He Y, Li B, Jung J, Zhang C, Liu X, Lin Z (2015) Continuous crafting of uniform colloidal nanocrystals by inert-gasdriven microflow reactor. Nanoscale 7(21):9731–9737

    Article  CAS  Google Scholar 

  21. Wang H, Wang Y, Cao X, Fenga M, Lan G (2009) Vibrational properties of graphene and graphene layers. J Raman Spectrosc 40(12):1791–1796

    Article  CAS  Google Scholar 

  22. Huang Y, Chang C, Lin M (2008) Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking. Phys Rev B 78(11):115422

    Article  Google Scholar 

  23. Fesenko V, Dovbeshko G, Dementjev A, Karpicz R, Kaplas T, Svirko Y (2015) Graphene-enhanced Raman spectroscopy of thymine adsorbed on single-layer grapheme. Nanoscale Res Lett 10(1):163

    Article  Google Scholar 

  24. Malard L, Nilsson J, Elias D, Brant J, Plentz F, Alves E, Castro Neto A, Pimenta M (2007) Probing the electronic structure of bilayer graphene by Raman scattering. Phys Rev B 76(20):201401

    Article  Google Scholar 

  25. Raj C, Kim B, Cho W, Lee W, Seo Y, Yu K (2014) Electrochemical capacitor behavior of copper sulfide (CuS) nanoplatelets. Alloys Compd 586:191–196

    Article  Google Scholar 

  26. Peng H, Ma G, Mu J, Sun K, Lei Z (2014) Controllable synthesis of CuS with hierarchical structures via a surfactant-free method for high-performance supercapacitors. Mater Lett 122:25–28

    Article  CAS  Google Scholar 

  27. Guan L, Yu L, Chen G (2016) Capacitive and non-capacitive faradic charge storage. Electrochim Acta 206:464–478

    Article  CAS  Google Scholar 

  28. Wu Y, Ding Y, Hayat T, Alsaedi A, Dai S (2018) Enlarged working potential window for MnO2 supercapacitors with neutral aqueous electrolytes. Appl Surf Sci 459:430–437

    Article  CAS  Google Scholar 

  29. Zhao X, Hou Y, Wang Y, Yang L, Zhu L, Cao R, Sha Z (2017) Prepared MnO2 with different crystal forms as electrode materials for supercapacitors: experimental research from hydrothermal crystallization process to electrochemical performances. RSC Adv 7(64):40286–40294

    Article  CAS  Google Scholar 

  30. Xu L, Jia M, Li Y, Zhang XJ, Zhang F (2017) High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci Rep 7(1):12857

    Article  Google Scholar 

  31. Chodankar N, Dubal D, Gund G, Lokhande C (2016) A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte. J Energy Chem 25(3):463–471

    Article  Google Scholar 

  32. Pototskaya V, Gichan O (2019) On the origin of phase angle in Warburg finite length diffusion impedance. Int J Electrochem Sci 14:8195–8205

    Article  CAS  Google Scholar 

  33. Peng C, ** J, Chen G (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53(2):525–537

    Article  CAS  Google Scholar 

  34. Kampouris D, Ji X, Randviir E, Banks C (2015) A new approach for the improved interpretation of capacitance measurements for materials utilised in energy storage. RSC Adv 5(17):12782–11279

    Article  CAS  Google Scholar 

  35. Patil A, Lokhande V, Patil U, Shinde P, Lokhande C (2018) High performance all-solid-state asymmetric supercapacitor device based on 3D nanospheres of β-MnO2 and nanoflowers of O-SnS. ACS Sustain Chem Eng 6(1):787–802

    Article  CAS  Google Scholar 

Download references

Funding

The Department of Science and Technology, Govt. of India, financially supported this study through a research project, Materials for Energy Storage (sanction no. DST/TMD/MES.2K17/04 (C&G)) dated 17 July 2018. Also, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03023788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrakant D. Lokhande.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The sequential layered hybrid nanostructure of rGO and CuS with specific surface area of 77 m2 gm−1 is synthesized by a facile successive ionic layer adsorption and reaction method.

2. The rGO-CuS electrode stores charges through diffusion-controlled process at low sweep rate.

3. The rGO-CuS//rGO-CuS supercapacitor device shows the highest specific energy 44 Wh kg−1 and specific power 1.4 kW kg−1.

4. The rGO-CuS electrode-based symmetric supercapacitor device exhibits good cycling stability (87%) and also retains 90% specific capacitance after bending.

Electronic supplementary material

ESM 1

(DOCX 2141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malavekar, D.B., Lokhande, V.C., Mane, V.J. et al. Facile synthesis of layered reduced graphene oxide–copper sulfide (rGO-CuS) hybrid electrode for all solid-state symmetric supercapacitor. J Solid State Electrochem 24, 2963–2974 (2020). https://doi.org/10.1007/s10008-020-04713-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04713-z

Keywords

Navigation