Log in

Low-temperature bromide modification of SnO2 for highly efficient perovskite solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electron transport layer (ETL) plays a crucial role in the rapidly developed perovskite solar cells (PSCs). SnO2 has become one of the most promising alternatives to the TiO2 ETL due to its superior characteristics, such as the wider bandgap and hysteresis-free. However, at this stage, a lot of preparation methods of SnO2 ETL exist in high temperature and long time, those undoubtedly increase the cost and time of preparation. Herein, we report a low-temperature solution-processed SnO2 ETL without high annealing temperature, and a special bromine salt is used to modify SnO2, which leads to a higher transmittance and improved carrier transport ability. Due to the excellent optical and electrical properties, the photoelectric conversion efficiency of the prepared PSC reaches up to 18.8%. Moreover, it can be fabricated using facile solution processing at low temperature, making it particularly attractive for flexible development and low-cost commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dong Y, Zhou Y, Qin W, Zhang Y, Liu SZ, Can L (2015) Alternating precursor layer deposition for highly stable perovskite films towards efficient solar cells using vacuum deposition. J Mater Chem A 3:9401–9405

    Article  Google Scholar 

  2. Hao F, Constantinos CS, Cao DH, Chang RPH, Mercouri GK (2014) Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics 8(6):489–494

    Article  CAS  Google Scholar 

  3. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Robin HB, Yum JH, Jacques EM, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2(1):591

    Article  Google Scholar 

  4. Yin W, Shi T, Yan Y (2014) Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater 26(27):4653–4658

    Article  CAS  Google Scholar 

  5. Dong Y, Zhou X, Ruixia Y, Zhou Y, Yu W, **uli W, Li C, Liu SZ, Chang RPH (2016) Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ Sci 9:3071–3078

    Article  Google Scholar 

  6. Liu Y, Zhou Y, Dong C, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Zhang X, Zhao C, Liu SZ (2015) Two-inch-sized perovskite CH3NH3PbX3 (X=cl, Br, I) crystals: growth and characterization. Adv Mater 27(35):5176–5183

    Article  CAS  Google Scholar 

  7. Liu Y, Zhang Y, Zhou Y, Dong Y, Ren X, Pang L, Liu SZ (2016) Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices. Adv Mater 28(41):9204–9209

    Article  CAS  Google Scholar 

  8. Ke W, Fang G, Liu Q, **ong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733

    Article  CAS  Google Scholar 

  9. Yan W, Li YL, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang CH (2015) High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16:428–437

    Article  CAS  Google Scholar 

  10. Ke W, Zhao D, **ao C, Wang C, Cimaroli A, Grice CR, Yang M, Li Z, Jiang C, Mowafak AJ, Kai Z, Kanatzidis MG, Fang G, Yan Y (2016) Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J Mater Chem A 4(37):14276–14283

    Article  CAS  Google Scholar 

  11. Zhao Z, Sun W, Li Y, Ye S, Rao H, Gu F, Liu Z, Bian Z, Huang C (2017) Simplification of device structures for low-cost, high-efficiency perovskite solar cells. J Mater Chem A 5(10):4756–4773

    Article  CAS  Google Scholar 

  12. Guo Z, Gao L, Zhang C, Xu Z, Ma T (2018) Low-temperature processed non-TiO2 electron selective layers for perovskite solar cells. J Mater Chem A 6(11):4572–4589

    Article  CAS  Google Scholar 

  13. Rao HS, Chen BX, Li WG, Xu YF, Chen YH, Kuang DB, Su CY (2015) Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Adv Funct Mater 25(46):7200–7207

    Article  CAS  Google Scholar 

  14. Song J, Zheng E, Bian J, Wang X, Tian W, Sanehira Y, Miyasaka T (2015) Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A 3(20):10837–10844

    Article  CAS  Google Scholar 

  15. Yang G, Wang C, Lei H, Zhang X, Qin P, **ong L, Zhao X, Yan Y, Fang G (2017) Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement. J Mater Chem A 5(4):1658–1666

    Article  CAS  Google Scholar 

  16. **ong L, Qin M, Yang G, Guo Y, Lei H, Liu Q, Ke W, Tao H, Qin P, Li S, Yu H, Fang G (2016) Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and understanding of the mechanism. J Mater Chem A 4(21):8374–8383

    Article  CAS  Google Scholar 

  17. Tran VH, Ambade RB, Ambade SB, Lee SH, Lee IH (2017) Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells. ACS Appl Mater Interfaces 9(2):1645–1653

    Article  CAS  Google Scholar 

  18. Huang L, Sun X, Li C, Xu J, Xu R, Du Y, Ni J, Cai H, Li J, Hu Z, Zhang J (2017) UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Appl Mater Interfaces 9(26):21909–21920

    Article  CAS  Google Scholar 

  19. Yang G, Lei H, Tao H, Zheng X, Ma J, Liu Q, Ke W, Chen Z, **ong L, Qin P, Chen Z, Qin M, Lu X, Yan Y, Fang G (2017) Reducing hysteresis and enhancing performance of perovskite solar cells using low-temperature processed Y-doped SnO2 nanosheets as electron selective layers. Small 13(2):1601769

    Article  Google Scholar 

  20. Correa Baena JP, Steier L, Tress W, Grätzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8:2928–2934

    Article  CAS  Google Scholar 

  21. Ahn BD, Jeon HJ, Sheng J, Park J, Park JS (2015) A review on the recent developments of solution processes for oxide thin film transistors. Semicond Sci Technol 30:064001

    Article  Google Scholar 

  22. Zhu Z, Bai Y, Liu X, Chueh CC, Yang S, Jen AKY (2016) Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer. Adv Mater 28(30):6478–6484

    Article  CAS  Google Scholar 

  23. Murugadoss G, Kanda H, Tanaka S, Nishino H, Seigolto, Imahori H, Umeyama T (2016) An efficient electron transport material of tin oxide for planar structure perovskite solar cells. J Power Sources 307:891–897

    Article  CAS  Google Scholar 

  24. Ren X, Dong Y, Yang Z, Feng J, Zhu X, Niu J, Liu Y, Zhao W, Liu SZ (2017) Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells. ACS Appl Mater Interfaces 9(3):2421–2429

    Article  CAS  Google Scholar 

  25. Han SY, Herman GS, Chang CH (2011) Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J Am Chem Soc 133(14):5166–5169

    Article  CAS  Google Scholar 

  26. Hwang YH, Seo JS, Yun JM, Park HJ, Yang S (2013) An “aqueous route” for the fabrication of low-temperature-processable oxide flexible transparent thin-film transistors on plastic substrates. NPG Asia Mater 5:e45

    Article  CAS  Google Scholar 

  27. Jun T, Song K, Jeong Y, Woo K, Kim D, Bae C, Moon J (2011) High-performance low-temperature solution-processable ZnO thin film transistors by microwave-assisted annealing. J Mater Chem 21(4):1102–1108

    Article  CAS  Google Scholar 

  28. Pathak SK, Abate A, Ruckdeschel P, Roose B, Gödel KC, Vaynzof Y, Santhala A, Watanabe SI, Hollman DJ, Noel N (2015) Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al do** of TiO2. Adv Funct Mater 24:6046–6055

    Article  Google Scholar 

  29. Kim DH, Han GS, Seong WM, Lee JW, Kim BJ, Park NG, Hong KS, Lee S, Jung HS (2015) Niobium do** effects on TiO2 mesoscopic electron transport layer-based perovskite solar cells. Chemsuschem 8:2392–2398

    Article  CAS  Google Scholar 

  30. Roose B, Johansen CM, Dupraz K, Jaouen T, Aebi P, Steiner U, Abate A (2018) A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells. J Mater Chem A 6(4):1850–1857

    Article  CAS  Google Scholar 

  31. Fang X, Wu Y, Lu Y, Sun Y, Zhang S, Zhang J, Zhang W, Yuan NY, Ding JN (2017) Annealing-free perovskite films based on solvent engineering for efficient solar cells. J Mater Chem C 5(4):842–847

    Article  CAS  Google Scholar 

  32. **ong L, Qin M, Yang G, Guo Y, Lei H, Liu Q, Ke W, Tao H, Qin P, Li S, Yu H, Fang G (2016) Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and mechanism understanding. J Mater Chem A 4(21):8374–8383

    Article  CAS  Google Scholar 

  33. Yu H, Chen X, Shuang Y, Li C, Zhao H, Huagui Y (2017) A band-edge potential gradient heterostructure to enhance electron extraction efficiency of the electron transport layer in high-performance perovskite solar cells. Adv Funct Mater 27:1700878

    Article  Google Scholar 

  34. Batzill M, Diebold U (2005) The surface and materials science of tin oxide. Prog Surf Sci 79(2-4):47–154

    Article  CAS  Google Scholar 

  35. Lu SC, Yang Z, Chao C, Ying Z, Li DB, Li KH, Chen WH, Wen XX, Chong W, Rokas K, Nathan L, Jiang T (2018) Sb2Se3 thin-film photovoltaics using aqueous solution sprayed SnO2 as the buffer layer. Adv Electron Mater 4:1700329

    Article  Google Scholar 

  36. Mulvaney P, Grieser F, Meisel D (1990) Electron transfer in aqueous colloidal Sn02 solutions. Langmuir 6(3):567–572

    Article  CAS  Google Scholar 

  37. Gu ZT, Liang PH, Liu XL, Zhang WQ, Le YQ (2000) Characteristics of sol-gel SnO2 films treated by ammonia. J Sol-Gel Sci Technol 18(2):159–166

    Article  CAS  Google Scholar 

  38. Cui D, Yang Z, Dong Y, Ren X, Liu Y, Wei Q, Fan H, Zeng J, Liu SZ (2016) Color-tuned perovskite films prepared for efficient solar cell applications. J Phys Chem C 120(1):42–47

    Article  CAS  Google Scholar 

  39. Zhu HL, **ao J, Mao J, Zhang H, Zhao Y, Choy WCY (2017) Controllable crystallization of CH3NH3Sn0.25Pb0.75I3perovskites for hysteresis-free solar cells with efficiency reaching 15.2%. Adv Funct Mater 27:1605469

    Article  Google Scholar 

  40. Bi Z, Liang Z, Xu X, Chai Z, ** H, Xu D, Li J, Li M, Xu G (2017) Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Sol Energy Mater Sol Cells 162:13–20

    Article  CAS  Google Scholar 

  41. He Y, Lei Y, Yang X, Lu K, Liu S, Gu L, Zheng Z (2016) Using elemental Pb surface as a precursor to fabricate large area CH3NH3PbI3 perovskite solar cells. Appl Surf Sci 389:540–546

    Article  CAS  Google Scholar 

  42. ** HH, You MS, Chang MH, Yin W, Ahn TK, Lee SJ, Sung SJ, Kim DH, Im SH (2015) Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of li-treated TiO2 electrode. Nano Energy 15:530–539

    Article  Google Scholar 

  43. Mahmood K, Swain BS, Amassian A (2015) Photovoltaics: highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials. Adv Mater 27(18):2814–2814

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51572037, 51335002), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Jiangsu Science and Technology Project (BE2017006-3), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 14KJA430001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningyi Yuan or Jianning Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 540 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Ma, Z., Wang, S. et al. Low-temperature bromide modification of SnO2 for highly efficient perovskite solar cells. J Solid State Electrochem 22, 3751–3759 (2018). https://doi.org/10.1007/s10008-018-4066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-018-4066-0

Keywords

Navigation