Log in

Direct electrochemistry and electrocatalysis of nitrite based on nano-alumina-modified electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Simple and sensitive electrochemical method for the determination of nitrite, based on a nano-alumina-modified glassy carbon electrode (GCE), is described. Nitrite yields a well-defined oxidation peak whose potential is 0.74 V at the nano-alumina-coated GCE in 0.1 mol L−1 phosphate buffer (pH 5.0). Compared with bare GCE, the nano-alumina-modified GCE has evident catalytic effect towards the oxidation of nitrite, and its peak current can be significantly enhanced. Some of the experimental parameters were optimized for the determination of nitrite. The oxidation peak current was proportional to nitrite concentration in the range of 5.0 × 10−8–1.1 × 10−3 mol L−1, and a detection limit of 1.0 × 10−8 mol L−1 was obtained. This method has been successfully used to the determination of nitrite in sausage sample. Furthermore, results obtained by the method have been compared with spectrophotometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun JQ, Sun YP, Wang Z, Sun CQ, Wang Y, Zhang X, Shen JC (2001) Macromol Chem Phys 202:111–116

    Article  CAS  Google Scholar 

  2. Mirvish SS (1995) Cancer Lett 93:17–48

    Article  CAS  Google Scholar 

  3. Wolf IA, Wasserman AE (1972) Science 177:15–19

    Article  Google Scholar 

  4. Walters CI (1980) Oncology 37:289–296

    Article  CAS  Google Scholar 

  5. Moorcroft MJ, Davis J, Compton RJ (2001) Talanta 54:785–803

    Article  CAS  Google Scholar 

  6. Frenzel W, Schulz-Brussel J, Zinvirt B (2004) Talanta 64:278–282

    Article  CAS  Google Scholar 

  7. Arias-Negrete S, Jimenez-Romero LA, Soliis-Martiinez MO, Ramiirez-Emiliano J, Avila EE, Cuella-Mata P (2004) Anal Biochem 328:14–21

    Article  CAS  Google Scholar 

  8. Siu DC, Henshall A (1998) J Chromatogr A 804:157–160

    Article  CAS  Google Scholar 

  9. Helaleh MIH, Korenaga T (2000) J Chromatogr B 744:433–437

    Article  CAS  Google Scholar 

  10. Dutt J, Davis J, Environ J (2002) Monit 4:465–471

    Article  CAS  Google Scholar 

  11. Geng RG, Zhao GH, Liu MC, Li MF (2008) Biomaterials 29:2794–2801

    Article  CAS  Google Scholar 

  12. Jiang LY, Wang RX, Li XM, Jiang LP, Lu GH (2005) Electrochem Commun 7:597–601

    Article  CAS  Google Scholar 

  13. Doménech A, Torres FJ, Alarcón J (2004) Electrochim Acta 49:4623–4632

    Google Scholar 

  14. **e F, Li WJ, He JL, Yu SF, Fu T, Yang H (2004) Mater. Chem Phys 86:425–429

    CAS  Google Scholar 

  15. Tau P, Nyokong T (2007) J Electroanal Chem 611:10–18

    Article  CAS  Google Scholar 

  16. Liu PF, Hu JH (2002) Sens Actuators B, Chem 84:194–199

    Article  Google Scholar 

  17. Li J, Xu JR, Sun XY (2002) Chin J Anal Chem 30:206–209

    CAS  Google Scholar 

  18. Caro CA, Bedioui F, Zagal JH (2002) Electrochim Acta 47:1489–1494

    Article  CAS  Google Scholar 

  19. Zhao YD, Zhang WD, Luo QM (2003) Microchem J 75:189–192

    Article  CAS  Google Scholar 

  20. Zak J, Kuwana T (1982) J Am Chem Soc 104:5514–5515

    Article  CAS  Google Scholar 

  21. He Q, Zheng DY, Hu SS (2009) Microchim Acta 164:459

    Article  CAS  Google Scholar 

  22. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and application. Wiley, New York

    Google Scholar 

  23. Pei JH, Li XY (2000) Talanta 51:1107–1115

    Article  CAS  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and application. Wiley, New York

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Nature Science Foundation of China (Nos. 30770549, 20805035, and 90817103) and the Nature Science Foundation of Education Department of Yunnan Province of China (No. 06Z048A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengShui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Gan, T., Zheng, D. et al. Direct electrochemistry and electrocatalysis of nitrite based on nano-alumina-modified electrode. J Solid State Electrochem 14, 1057–1064 (2010). https://doi.org/10.1007/s10008-009-0915-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0915-1

Keywords

Navigation