Log in

Exploring structural phase transition, electronic and optical characteristics of optoelectronic phosphides XSiP2 (X = Mg, Cd, and Zn) through First principle computation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The present study reports the properties of pressure-induced phase transition, electronic and optical of phosphides XSiP2 under pressure in chalcopyrite, sodium chloride (rock salt), and Wurtzite phases. The study shows the chalcopyrite phase as the most stable phase among the other studied phases. The obtained structural parameters in the chalcopyrite and rock-salt phases reasonably agree with the literature. The computed band structures revealed a semiconductor behavior in chalcopyrite structure and metallic behavior for rock- salt and wurtzite structures. In the energy range of 0 to 30 eV, optical parameters such as the real and imaginary parts of the dielectric constant, refractive index, and reflectivity are calculated and compared with existing data. Our optical properties findings are predictive for the rock-salt and wurtzite phases. Since no results are available in the literature, these results may serve as references for other theoretical and experimental studies.

Method

The calculations are performed by employing the “full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT).”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Martinez AD, Warren EL, Gorai P, Borup KA, Kuciauskas D, Dippo PC, Ortiz BR, Macaluso RT, Nguyen SD, Greenaway AL, Boettcher SW, Norman AG, Stevanovic V, Toberer ES, Tamboli AC (2016) Energy Environ Sci 9:1031

    CAS  Google Scholar 

  2. Kudryashov DA, Gudovskikh AS, Mozharov AM, Bol’shakov AD, Mukhin IS, Alferov ZI (2015) Tech Phys Lett 41:1120

    CAS  Google Scholar 

  3. Horinaka H, Mononobe S, Yamamoto N (1993) Jpn J Appl Phys 32:109

    CAS  Google Scholar 

  4. Petrov V, Rotermund F, Noack F, Schunemann P (1999) Opt Lett 24:414

    CAS  PubMed  Google Scholar 

  5. Ouahrani T, YaseminÖztekin Ç, Mebrouki M (2014) J Alloys Compd 610:372

    CAS  Google Scholar 

  6. Cheddadi S, Meradji H, Ghemid S, Tairi L, Bin Omran S, Khenata R (2018) Physica B 530:24

    CAS  Google Scholar 

  7. Rashkeev SN, Lambrecht WRL (2001) Phys Rev B 63:165212

  8. Frederick W, Tang CL (1973) Phys Rev B 8:4607

    Google Scholar 

  9. Si Ziani N, Seddik T, Bouhani-Benziane H, Betine K, Belfedal A, Sahnoun M (2019) Solid State Commun 302:113731

    Google Scholar 

  10. Deus P, Sciineid HA (1983) Phys Status Solidi A 79:411

    CAS  Google Scholar 

  11. Trykozko RT (1975) Mat Res Bull 10:489

    CAS  Google Scholar 

  12. Shen HS, Yao GQ, Kershaw R, Dwight K, Wold A (1987) J Solid State Chem 71:176

    CAS  Google Scholar 

  13. Ouahrani T (2013) Eur Phys J B 86:369

    Google Scholar 

  14. Bidai K, Tabeti A, Si Mohammed DJ, Seddik T, Batouche M, Özdemir M, Bakhti B (2020) Comput Condens Matter 24:e00490

    Google Scholar 

  15. Thahirunnisa SR, ShameemBanu IB, Mohamed Sheik Sirajuddeen M, Nabi Lone I (2021) Comput Condens Matter 29:e00601

    Google Scholar 

  16. Wang Ci, Zhang J, Qingmiao Hu, Tao X (2019) J Alloys Compd 802:310

    CAS  Google Scholar 

  17. He Z, Zhao B, Zhu S, Chen B, Hou H, You Yu, **e L (2013) Comput Mater Sci 72:26

    CAS  Google Scholar 

  18. Petukhov AG, Lambrecht WRL, Segall B (1994) Phys Rev B 49:4549

    CAS  Google Scholar 

  19. Dey A, Baraiya BA, Adhikary S, Jha PK, Appl ACS (2021) Nano Mater 4:493

    CAS  Google Scholar 

  20. Dey A, Azizimanesh A, Wu SM, Askari H, Appl ACS (2024) Mater Interfaces 16:8169

    CAS  Google Scholar 

  21. Dey A, Chowdhury SA, Peña T, Singh S, Wu SM, Askari H, Appl ACS (2023) Eng Mater 1:970

    CAS  Google Scholar 

  22. Hou W, Azizimanesh A, Dey A, Yang Y, Wang W, Shao C, Wu H, Askari H, Singh S, Wu SM (2024) Nat Electron 7:8

    CAS  Google Scholar 

  23. Kumar P, Dey A, Roques J, Assaud L, Franger S, Parida P, Biju V (2022) ACS Materials Lett 4:263

    CAS  Google Scholar 

  24. Bhadram VS, Krishna L, Toberer ES, Hrubiak R, Greenberg E, Prakapenka VB, Strobel TA (2017) Appl Phys Lett 110:182106

    Google Scholar 

  25. Abdellaoui A, Ghaffour M, Bouslama M, Benalia S, Ouerdane A, Abidri B, Monteil Y (2009) J Alloys Compd 487:206

    CAS  Google Scholar 

  26. Kumar RS, Sekar A, Victor Jaya N, Natarajan S, Chichibu S (2000) J Alloys Compd 312:4

    CAS  Google Scholar 

  27. Roa L, Chervin JC, Chevy A, Davila M, Grima Gallardo P, González J (1996) Phys Status Solidi B 198:99

    CAS  Google Scholar 

  28. Lazewski J, Jochym TP, Parlinski K (2002) J Chem Phys 117:2726

    CAS  Google Scholar 

  29. Thangavel R, Rajagopal M, Kumar J (2008) Physica B 403:1824

    CAS  Google Scholar 

  30. Tinoco T, Polian A, Gòmez D, Itié JP (1996) Phys Status Solidi B 198:433

    CAS  Google Scholar 

  31. Carlone C, Olego D, Jayaraman A, Cardona M (1980) Phys Rev B 22:3877

    CAS  Google Scholar 

  32. Shirakata S, Shirakawa T, Nakai J (1983) Nuovo Cimento D 2:2058

    Google Scholar 

  33. Bendorius R, Prochukhan VD, Sileika A (1972) Phys Status Solidi 53:745

    CAS  Google Scholar 

  34. Bovornratanaraks T, Saengsuwan V, Yoodee K, McMahon MI, Hejny C, Ruffolo D (2010) J Phys: Condens Matter 22:355801

    CAS  PubMed  Google Scholar 

  35. Pluengphon P, Bovornratanaraks T (2015) Solid State Commun 218:1

    CAS  Google Scholar 

  36. Xue H, Tang F, Lu W, Feng Y, Wang Z, Wang Y (2013) Comput Mater Sci 67:21

    CAS  Google Scholar 

  37. Bovornratanaraks T, Kotmool K, Yoodee K, McMahon MI, Ruffolo D (2010) J Phys: Conf Ser 215:012008

    Google Scholar 

  38. Anderson OK (1975) Phys Rev B42:3060

    Google Scholar 

  39. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, WIEN2k (2021) An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, Austria

  40. Labidi S, Meradji H, Ghemid S, Labidi M, El Haj Hassan F (2008) J Phys: Condens Matter 20:445213

    Google Scholar 

  41. Wu Z (2006) R E Cohen Phys Rev B 73:235116

    Google Scholar 

  42. Tran F, Laskowski R, Blaha P, Schwarz K (2007) Phys Rev B 75:115131

    Google Scholar 

  43. Becke AD, Johnson ER (2006) J Chem Phys 124:221101

    PubMed  Google Scholar 

  44. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    PubMed  Google Scholar 

  45. Werner A, Hocheimer DH, Jayaraman A (1981) Phys Rev B 23:3836

    CAS  Google Scholar 

  46. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kocak B, Ciftci YO (2017) J Alloys Compd 705:211

    CAS  Google Scholar 

  48. Shaposhnikov VL, Krivosheeva AV, Borisenko VE, Lazzari JL, d’Avitaya FA (2012) Phys Rev B 85:205201

    Google Scholar 

  49. Shi L, Hu J, Qin Y, Duan Y, Wu L, Yang X, Tang G (2014) J Alloys Compd 611:210

    CAS  Google Scholar 

  50. Vaipolin AA, TelaSov F (1973) Phys Solid State 15:965

    Google Scholar 

  51. Landolt B (2000) In: O Madelung, U Rossler, M Schulz (eds), Condensed Matter, Ternary Compounds, Organic Semiconductors, New Series, Group III, vol 41. Springer-Verlag, Berlin

  52. Chiker F, Abbar B, Tadjer A, Aourag H, Khelifa B (2003) Mater Sci Eng B 98:81

    Google Scholar 

  53. Meng QB, **ao CY, Wu ZJ, Feng KA, Lin ZD, Zhang SY (1998) Solid State Commun 107:369

    CAS  Google Scholar 

  54. Mackinnon A (1985) Landolt-Bonstein New Series, Group III, vol 17 (Pt. H). Springer, Berlin, p 9

  55. Bettini M, Holzapfel WB (1975) Solid State Commun 16:27

    CAS  Google Scholar 

  56. Arab F, Sahraoui FA, Haddadi K, Louail L (2012) Comput Mater Sci 65:520

    CAS  Google Scholar 

  57. Kumar V, Tripathy SK (2014) J Alloys Compd 582(101):101

    CAS  Google Scholar 

  58. Peña-Pedraza H, Lopez-Rivera SA, Martin JM, Delgado JM (2012) Mater Sci Eng B 177:1465

    Google Scholar 

  59. Abrahams SC, Bernstein JL (1970) J Chem Phys 52:5607

    CAS  Google Scholar 

  60. Chouit F, Sifi C, Slimani M, Meradji H, Ghemid S, Khenata R, Rai DP, Bin Omran S (2018) Philos Mag 98:295

    CAS  Google Scholar 

  61. Wettling W, Windscheif J (1984) Solid State Commun 50:33

    CAS  Google Scholar 

  62. Phillips JC (1971) Phys Rev Lett 27:1197

    CAS  Google Scholar 

  63. Marquéss M, Ackland GJ, Lundegaard LF, Contreras-Garcìa J, McMahon MI (2009) Phys Rev Lett 103:115501

    Google Scholar 

  64. Goodman CHL (1991) Semicond Sci Technol 6:725

    CAS  Google Scholar 

  65. Spring Thorpe AJ, Harrison JG (1969) Nature 222:977

  66. Averkieva GK, Mamedov A, Prochukhan VD, Rud YV (1978) Fiz Tekh Poluprovodn 12 1732 (1978) [Sov Phys Semicond 12 1025 (1978)]

  67. Chiker F, Kebbab Z, Miloua R, Benramdane N (2011) Solid State Commun 151:1568

    CAS  Google Scholar 

  68. Fan L, Zhu S, Zhao B, Chen B, He Z, Yang H, Liu G, Wang X (2013) J Cryst Growth 364:62

    CAS  Google Scholar 

  69. MacKinnon A (1985) In: Numerical Data and Functional Relationships in Science and Technology, edited by O. Madelung, Landolt-Börnstein New Series, vol 17(Pt. h). Springer, Berlin, p 9

  70. Rashkeev SN, Limpijumnong S, Lambrecht RL (1999) Phys Rev B 59:2737

    CAS  Google Scholar 

  71. Shay JL, Tell B, Buehler E, Wernick JH (1973) Phys Rev Lett 30:983

    CAS  Google Scholar 

  72. Bennacer H, Boukortt A, Meskine S, Hadjab M, Ziane MI, Zaoui A (2018) Optik 159:229

    CAS  Google Scholar 

  73. Harbeke G (1972) In: Abelès F (ed) Optical properties of solids. North-Holland Pub. Co, New York, American Elsevier Amsterdam, p 1034

  74. Sibghat-ullah, Murtaza G, Khenata R, Reshak AH (2014) Mater Sci Semicond Process 26:79

  75. Lv Z-L, Cui H-L, Wang H, Li X-H, Ji G-F (2016) Solid State Commun 246:88

    CAS  Google Scholar 

  76. Reddy RR, NazeerAhammed Y, Rama Gopal K, Raghuram DV (1998) Opt Mater 10:95

    CAS  Google Scholar 

  77. Chiker F, Abbar B, Bresson S, Khelifa B, Mathieu C, Tadjer A (2004) J Solid State Chem 177:3859

    CAS  Google Scholar 

  78. Penn DR (1962) Phys Rev 128:2093

    CAS  Google Scholar 

  79. Joshi N, Upadhyay D, Pandya A, Jha PK (2022) Opt Mater 132:112798

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the General Direction of Scientific Research, Algeria.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

F. Semari, S. Ghemid: Conceptualization, Methodology, Software. O. Drici, H. Meradji Data curation, Writing- Original draft preparation. O. Drici, Bakhtiar Ul Haq: Visualization, Investigation. H. Meradji: Supervision. S. Ghemid: Software, Validation. W. Ahmed, R. Khenata: Writing- Reviewing and Editing.

Corresponding authors

Correspondence to H. Meradji or R. Khenata.

Ethics declarations

Consent for publication

All authors approve of the ethics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3255 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drici, O., Semari, F., Meradji, H. et al. Exploring structural phase transition, electronic and optical characteristics of optoelectronic phosphides XSiP2 (X = Mg, Cd, and Zn) through First principle computation. J Mol Model 30, 202 (2024). https://doi.org/10.1007/s00894-024-06001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-06001-3

Keywords

Navigation