Log in

Identification of microbes using single-layer graphene-based nano biosensors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

Graphene based nano sensors have huge potential in an era of sensor technology. The objective of this study is to create a sensor by investigating the vibration responses of cantilever and bridged boundary conditioned single layer graphene sheets (SLGS) with various attached microorganisms on the tip and at the centre of the sheet. The Parvoviridae, Flaviviridae, and Polyomaviridae biological substances have been comprehensively investigated here. For the Parvoviridae, Polyomaviridae, and Flaviviridae categories of targeted microbes, the sizes are 21nm, 40nm, and 45nm, respectively. The Parvoviridae family has a maximum frequency of 1.87x107 Hz with a cantilever condition and a mass of 4.2441 Zg, and for a bridged condition, it demonstrates a maximum frequency of 1.23x108 Hz with the same mass on armchair SLG (5 5). The data analysis shows that 3.0041 Zg mass of the Mimivirus has the lowest frequency. It demonstrates explicitly that the rate of frequency decreases as the value of mass increases. When compared to chiral SLG, the armchair single layer graphene sheet performs better. The research indicates that the dynamic properties are significantly influenced by the mass of various biological organisms. The application of this sensor will enable the detection of microorganisms or viruses that can be connected to SLG.

Methods

In this research, the application of Single Layer Graphene (SLG) as a virus sensing device is explored. Atomistic finite element method (AFEM) has been used to carry out the dynamic analysis of SLG. Molecular dynamic analysis and simulations have been performed to see how SLG behaves when employed as sensors for biological entities and when they are exposed to bridged and cantilever boundary conditions. The frequency analysis was performed using ANSYS APDL software. SLG of various chirality has been utilised in the investigation. By altering the applied mass of a biological object, the difference in frequency observed. The idea behind mass detection employing nano biosensors is built on the concept that the stiffness of a biomolecule changes as its mass changes, making the resonant frequency extremely sensitive to that change. A shift in the resonance frequency results from a change in the associated mass on the graphene sheet. The main challenge in mass detection is estimating the variation in resonant frequency driven by the mass of the connected molecule. The SLG-based biosensor has a specific application in the early identification of diseases. The biosensor investigated in this article is novel, whereas the biosensors that are presently on the market operate using the ionization method. The simulations result shows SLG based biosensor's sensitivity considerably faster than an existing one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Li Y, Luo G, Qing Z, Li X, Zou Z, Yang R (2019) Colorimetric aminotriazole assay based on catalase deactivation-dependent longitudinal etching of gold nanorods. Microchim Acta 186(8):1–7

    Article  Google Scholar 

  2. Qing Z, Bai A, Chen L, **ng S, Zou Z, Lei Y, Yang R (2021) An activatable nanoenzyme reactor for coenhanced chemodynamic and starving therapy against tumor hypoxia and antioxidant defense system. CCS Chem 3(5):1217–1230

    Article  CAS  Google Scholar 

  3. Qing Z, Luo G, **ng S, Zou Z, Lei Y, Liu J, Yang R (2020) Pt–S bond-mediated nanoflares for high-fidelity intracellular applications by avoiding thiol cleavage. Angew Chem Int Ed 59(33):14044–14048

    Article  CAS  Google Scholar 

  4. Sanvicens N, Pastells C, Pascual N, Marco MP (2009) Nanoparticle-based biosensors for detection of pathogenic bacteria. TrAC Trends Anal Chem 28(11):1243–1252

    Article  CAS  Google Scholar 

  5. Justino CI, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TA (2017) Graphene based sensors and biosensors. TrAC Trends Anal Chem 91:53–66

    Article  CAS  Google Scholar 

  6. Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X (2017) Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 89:96–106

    Article  CAS  PubMed  Google Scholar 

  7. Zhu C, Du D, Lin Y (2017) Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens Bioelectron 89:43–55

    Article  CAS  PubMed  Google Scholar 

  8. Forsyth R, Devadoss A, Guy OJ (2017) Graphene field effect transistors for biomedical applications: current status and future prospects. Diagnostics 7(3):45

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kolev SK, Aleksandrov HA, Atanasov VA, Popov VN, Milenov TI (2019) Interaction of graphene with out-of-plane aromatic hydrocarbons. J Phys Chem C 123(35):21448–21456

    Article  CAS  Google Scholar 

  10. Danielson E, Sontakke VA, Porkovich AJ, Wang Z, Kumar P, Ziadi Z, Sowwan M (2020) Graphene based field-effect transistor biosensors functionalized using gas-phase synthesized gold nanoparticles.  Sens Actuators B Chem 320:128432

    Article  CAS  Google Scholar 

  11. Ahmed A, Rushworth JV, Hirst NA, Millner PA (2014) Biosensors for whole-cell bacterial detection. Clin Microbiol Rev 27(3):631–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu Y, **e X, Duan Y, Wang L, Cheng Z, Cheng J (2016) A review of impedance measurements of whole cells. Biosens Bioelectron 77:824–836

    Article  CAS  PubMed  Google Scholar 

  13. Ajayan PM, Charlier JC, Rinzler AG (1999) Carbon nanotubes: from macromolecules to nanotechnology. Proc Natl Acad Sci 96(25):14199–14200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chowdhury R, Adhikari S (2010) Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations. IEEE Trans Nanotechnol 10(4):659–667

    Article  Google Scholar 

  15. Chowdhury R, Adhikari S, Mitchell J (2009) Vibrating carbon nanotube-based bio-sensors. Physica E 42(2):104–109

    Article  CAS  Google Scholar 

  16. Georgantzinos SK, Anifantis NK (2010) Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Physica E 42(5):1795–1801

    Article  CAS  Google Scholar 

  17. Elishakoff I, Versaci C, Maugeri N, Muscolino G (2011) Clamped-free single-walled carbon nanotube-based mass sensor treated as Bernoulli–Euler beam. J Nanotechnol Eng Med 2(2)

  18. Tounsi A, Semmah A, Bousahla AA (2013) Thermal buckling behavior of nanobeams using an efficient higher-order nonlocal beam theory. J Nanomech Micromech 3(3):37–42

    Article  Google Scholar 

  19. Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104(5):2089–2092

    Article  CAS  Google Scholar 

  20. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  21. Li C, Chou TW (2004) Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl Phys Lett 84(1):121–123

    Article  CAS  Google Scholar 

  22. Li C, Chou TW (2004) Mass detection using carbon nanotube-based nanomechanical resonators. Appl Phys Lett 84(25):5246–5248

    Article  CAS  Google Scholar 

  23. Hernández R, Vallés C, Benito AM, Maser WK, Rius FX, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557

    Article  PubMed  Google Scholar 

  24. Joshi AY, Patel AM (2017) Sensing the presence and amount of microbes using double walled carbon nanotubes. Advancing Medicine through Nanotechnology and Nanomechanics Applications. IGI Global, pp 78–117

    Chapter  Google Scholar 

  25. Bhardwaj SK, Bhardwaj N, Kumar V, Bhatt D, Azzouz A, Bhaumik J, Kim K-H, Deep A (2021) Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environ Int 146:106183

    Article  CAS  PubMed  Google Scholar 

  26. Moens U, Calvignac-Spencer S, Lauber C, Ramqvist T, Feltkamp MC, Daugherty MD, Ehlers B (2017) ICTV virus taxonomy profile: Polyomaviridae. J Gen Virol 98(6):1159–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harprecht C (2020) Structural analysis of JC polyomavirus inhibitors and receptors (Doctoral dissertation). Universität Tübingen

    Google Scholar 

  28. Taxonomy, V. (2020). Release. International Committee on Taxonomy of Viruses (ICTV). March 2019. Archived from the original on 2018-03-04. Retrieved 2020-01-24

    Google Scholar 

  29. Gorbalenya AE, Snijder EJ, Spaan WJ (2004) Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol 78(15):7863–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minutilli E, Mulè A (2016) Merkel cell polyomavirus and cutaneous Merkel cell carcinoma. Future Sci OA 2(4):FSO155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, Hoen AG et al (2016) Seroepidemiology of human polyomaviruses in a US population. Am J Epidemiol 183(1):61–69

    Article  PubMed  Google Scholar 

  32. Knowles WA, Pipkin P, Andrews N, Vyse A, Minor P, Brown DW, Miller E (2003) Population-based study of antibody to the human polyomaviruses BKV and JCV and the simian polyomavirus SV40. J Med Virol 71(1):115–123

    Article  PubMed  Google Scholar 

  33. Jamboti JS (2016) BK virus nephropathy in renal transplant recipients. Nephrology 21(8):647–654

    Article  PubMed  Google Scholar 

  34. Kuppachi S, Kaur D, Holanda DG, Thomas CP (2016) BK polyoma virus infection and renal disease in non-renal solid organ transplantation. Clin Kidney J 9(2):310–318

    Article  CAS  PubMed  Google Scholar 

  35. Adang L, Berger J (2015) Progressive multifocal leukoencephalopathy. F1000Research 4

  36. Feng H, Shuda M, Chang Y, Moore PS (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319(5866):1096–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S et al (2017) ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98(1):2–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scheel TK, Simmonds P, Kapoor A (2015) Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antivir Res 115:83–93

    Article  CAS  PubMed  Google Scholar 

  39. Valles SM, Chen Y, Firth AE, Guérin DMA, Hashimoto Y, Herrero S, De Miranda JR, Ryabov E, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Iflaviridae. J Gen Virol 98(4):527–528

  40. Rosario K, Breitbart M, Harrach B, Segalés J, Delwart E, Biagini P, Varsani A (2017) Revisiting the taxonomy of the family Circoviridae: establishment of the genus Cyclovirus and removal of the genus Gyrovirus. Arch Virol 162(5):1447–1463

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499

    Article  Google Scholar 

  42. Stuart SJ, Tutein AB, Harrison JA (2000) A reactive potential for hydrocarbons with intermolecular interactions. J Chem Phys 112(14):6472–6486

    Article  CAS  Google Scholar 

  43. Blagov EV, Klimchitskaya GL, Mostepanenko VM (2007) van der Waals interaction between a microparticle and a single-walled carbon nanotube. Phys Rev B 75(23):235413

    Article  Google Scholar 

  44. Zhang YY, Wang CM, Tan VBC (2009) Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv Appl Math Mech 1(1):89–106

    Google Scholar 

  45. Lee HL, Chang WJ (2009) A closed-form solution for critical buckling temperature of a single-walled carbon nanotube. Physica E 41(8):1492–1494

    Article  CAS  Google Scholar 

  46. Natsuki T (2015) Theoretical analysis of vibration frequency of graphene sheets used as nanomechanical mass sensor. Electronics 4(4):723–738

    Article  CAS  Google Scholar 

  47. Makwana M, Patel AM, Oza AD, Prakash C, Gupta LR, Vatin NI, Dixit S (2022) Effect of mass on the dynamic characteristics of single-and double-layered graphene-based nano resonators. Materials 15(16):5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Makwana MV, Patel AM (2022) Molecular dynamic analysis of pristine single layered graphene for mass sensor. Materials Today: Proceedings

    Google Scholar 

  49. Makwana MV, Patel AM (2022) Recent applications and synthesis techniques of graphene. Micro Nanosyst 14(4):287–303

    Article  CAS  Google Scholar 

  50. Makwana M, Patel AM (2023) Nanoresonator vibrational behaviour analysis of single-and double-layer graphene with atomic vacancy and pinhole defects. J Mol Model 29(5):149

    Article  CAS  PubMed  Google Scholar 

  51. Elishakoff I, Challamel N, Soret C, Bekel Y, Gomez T (2013) Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Philos Trans Royal Soc A: Math, Phys Eng Sci 371(1993):20120424

    Article  Google Scholar 

  52. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2010) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39(Database issue):D576–D582

    PubMed  PubMed Central  Google Scholar 

  53. Hulo C, de Castro E, Masson P, Bougueleret L, Bairoch A, Xenarios I, Le Mercier P (2011) ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res 39(suppl_1):D576–D582. https://doi.org/10.1093/nar/gkq901

    Article  CAS  PubMed  Google Scholar 

  54. Bofill-Mas, S. (2016). Polyomavirus. In: J.B. Rose and B. Jiménez-Cisneros, (eds) Water and sanitation for the 21st century: health and microbiological aspects of excreta and wastewater management (Global Water Pathogen Project). (J.S Meschke, and R. Girones (eds), Part 3: specific excreted pathogens: environmental and epidemiology aspects - Section 1: Viruses), Michigan State University, E. Lansing, MI, UNESCO

  55. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, Ictv Report Consortium (2017) ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98(1):2–3. https://doi.org/10.1099/jgv.0.000672 PMID: 28218572; PMCID: PMC5370391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mehranfar A, Khavani M, Izadyar M (2022) A molecular dynamic study on the ability of phosphorene for designing new sensor for SARS-CoV-2 detection. J Mol Liq 345:117852

    Article  CAS  PubMed  Google Scholar 

  57. Verma N, Badhe Y, Gupta R, Maparu AK, Rai B (2022) Peptide mediated colorimetric detection of SARS-CoV-2 using gold nanoparticles: a molecular dynamics simulation study. J Mol Model 28(7):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gholami R, Solimannejad M (2022) Potential of B24N24 nanocluster for sensing and delivering aloe-emodin anticancer drug: A DFT study. J Mol Struct 1270:133968

    Article  CAS  Google Scholar 

  59. Mayo MA, Pringle CR (1998) Virus taxonomy-1997. J Gen Virol 79(4):649–657

    Article  CAS  PubMed  Google Scholar 

  60. Murphy FA, Fauquet CM, Bishop DH, Ghabrial SA, Jarvis AW, Martelli GP, Summers MD (2012) Virus taxonomy: classification and nomenclature of viruses (Vol. 10). Springer Science & Business Media

    Google Scholar 

  61. EA G, Solomon T (2008) Pathogenic flaviviruses. Lancet 371(9611):500–509

    Article  Google Scholar 

  62. Qiu Y, Zhang Y, Ademiloye AS, Wu Z (2020) Molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene. Comput Mater Sci 182:109798

    Article  CAS  Google Scholar 

  63. Chaudhary R, Mudimela PR (2020) 3D modeling of graphene oxide based nanoelectromechanical capacitive switch. Microsyst Technol 26(9):2931–2937

    Article  CAS  Google Scholar 

  64. Chaudhary R, Mudimela PR (2020) Pull-in response and eigen frequency analysis of graphene oxide-based NEMS switch. Mater Today: Proc 28:196–200

    CAS  Google Scholar 

  65. Chaudhary R, Jhanwar P, Mudimela PR (2023) Finite element analysis of graphene oxide hinge structure-based RF NEM switch. IETE J Res 69(2):967–974

    Article  Google Scholar 

  66. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26(12):4637–4648

    Article  CAS  PubMed  Google Scholar 

  67. Huang Y, Dong X, Liu Y, Li LJ, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362

    Article  CAS  Google Scholar 

  68. Shearer CJ, Slattery AD, Stapleton AJ, Shapter JG, Gibson CT (2016) Accurate thickness measurement of graphene. Nanotechnology 27(12):125704

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CVM University, Vallabh Vidyanagar, Gujarat, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [Manisha Makwana] and [Dr. Ajay M Patel]. The first draft of the manuscript was written by [Manisha Makwana], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manisha Makwana.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Human and animal rights

Our manuscript does not report on or involve the use of any animal or human data or tissue.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makwana, M., Patel, A.M. Identification of microbes using single-layer graphene-based nano biosensors. J Mol Model 29, 382 (2023). https://doi.org/10.1007/s00894-023-05748-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05748-5

Keywords

Navigation