Log in

Analysis of phase stability, elastic, electronic, thermal, and optical properties of Sc1-xYxN via ab initio methods

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the physical properties of a material is crucial to know its applicability for practical applications. In this study, we investigate the phase stability, elastic, electronic, thermal, and optical properties of the ternary alloying of the scandium and yttrium nitrides (Sc1-xYxN) for different compositions. To do so, we apply a “density functional theory (DFT)” based scheme of calculations named as “full potential (FP) linearized (L) augmented plane wave plus local orbitals (APW + lo) method” realized in the WIEN2k computational package. At first, the phase stability of the investigated compositions of the mentioned alloy is determined. The analysis of our calculations shows that Sc1-xYxN alloy is stable in rock salt crystal structure for all investigated compositions. Next to that, the elastic properties of the rock-salt phase of the studied ternary alloy Sc1-xYxN at all above said compositions were done at the level of “Wu-Cohen generalized gradient approximation (Wu-GGA)” within DFT. However, Trans-Blaha (TB) approximation of the “modified Becke-Johson (mBJ)” potential is also used in combination with Wu-GGA where the thermal properties are calculated at the level of the “quasi-harmonic Debye model.” The obtained results for the absorption coefficients, and optical bandgap, represent that the title alloy may be a suitable candidate for the applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

N/A.

References

  1. Yang S, Lewis DB, Cawley J, Brooksadn JS, Munz WD (2000) Surf Coat Technol 131:228

    Article  CAS  Google Scholar 

  2. Inumaru K, Ohara T, Yamanaka S (2000) Appl Surf Sci 158:375

    Article  CAS  Google Scholar 

  3. Gall D, Petrov I, Hellgren N, Hultman L, Sundgren JE, Greene JE (1998) J Appl Phys 84:6034

    Article  CAS  Google Scholar 

  4. Gall D, Städele M, Järrendahl K, Petrov I, Desjardins P, Haasch RT, Lee TY, Greene JE (2001) Phys Rev B 63:125119

    Article  Google Scholar 

  5. Smith AR, Al-Brithen HAH, Ingram DC, Gall D (2001) J Appl Phys 90:1809

    Article  CAS  Google Scholar 

  6. Moreira M, Bjurstrom J, Katardjev I, Yantchev V (2011) Vacuum 86:23

    Article  Google Scholar 

  7. Matloub R, Artieda A, Sandu C, Milyutin E, Muralt P (2011) Appl Phys Lett 99:092903

    Article  Google Scholar 

  8. Matloub R, Hadad M, Mazzalai A, Chidambaram N, Moulard G, Sandu CS, Metzger T, Muralt P (2013) Appl Phys Lett 102:152903

    Article  Google Scholar 

  9. Mohammad R, Katırcıoğlu S (2011) Condens Matter Phys 14:23701

    Article  Google Scholar 

  10. King SW, Nemanich RJ, Davis RF (2014) Appl Phys Lett 105:081606

    Article  Google Scholar 

  11. Moram MA, Kappers MJ, Joyce TB, Chalker PR, Barber ZH, Humphreys CJ (2007) J Cryst Growth 308:302

    Article  CAS  Google Scholar 

  12. Moram MA, Zhang Y, Kappers MJ, Barber ZH, Humphreys CJ (2007) Appl Phys Lett 91:152101

    Article  Google Scholar 

  13. Moram MA, Johnston CF, Kappers MJ, Humphreys CJ (2009) J Cryst Growth 311:3239

    Article  CAS  Google Scholar 

  14. Liu J, Li XB, Zhang H, Yin WJ, Zhang HB, Peng P, Liu LM (2014) J Appl Phys 115:093504

    Article  Google Scholar 

  15. Knoll SM, Rhode SK, Zhang S, Joyce TB, Moram MA (2014) Appl Phys Lett 104:101906

    Article  Google Scholar 

  16. Deng RP, Jiang K, Gall D (2014) J Appl Phys 115:013506

    Article  Google Scholar 

  17. Saha B, Naik G, Drachev VP, Boltasseva A, Marinero EE, Sands TD (2013) J Appl Phys 114:063519

    Article  Google Scholar 

  18. Herwadkar A, Lambrecht WRL, van Schilfgaarde M (2008) Phys Rev B 77:134433

    Article  Google Scholar 

  19. Little ME, Kordesch ME (2001) Appl Phys Lett 78:2891

    Article  CAS  Google Scholar 

  20. Constantin C, Al-Brithen H, Haider MB, Ingram D, Smith AR (2004) Phys Rev B 70:193309

    Article  Google Scholar 

  21. Deng R, Evans SR, Gall D (2013) Appl Phys Lett 102:112103

    Article  Google Scholar 

  22. Soto G, Aparicio E, Avalos Borja M (2005) J Alloys Compd 389:42

  23. Soto G, Moreno Armenta MG, Reyes-Serrato A (2008) Comp Mat Sc 42:8–13

  24. Mohammad R, Katırcıoğlu S (2011) Condens Matter Phys 14:23701

    Article  Google Scholar 

  25. Abu Jafar MS, Abu Labdeh AM, El Hasan M (2010) Comput Mater Sci 50:269–273

  26. Deng R, Ozsdolay BD, Zheng PY, Khare SV, Gall D (2015) Phys Rev B 91:045104

    Article  Google Scholar 

  27. Saha B, Acharya J, Sands TD, Waghmare UV (2010) J Appl Phys 107:033715

    Article  Google Scholar 

  28. Sukkabot W (2019) Physica B 570:236–240

    Article  CAS  Google Scholar 

  29. Tamleh S, Rezaei G, Vaseghi B, Jalilian J (2020) J Phys Chem Solids 138:109270

    Article  CAS  Google Scholar 

  30. Gueddim A, Bouarissa N, Gacem L, Villesuzanne A (2018) Chin J Phys 56:1816–1825

    Article  CAS  Google Scholar 

  31. Sánchez JG, Cocoletzi GH, Silva JFR, Takeuchi N (2016) Superlattice Microstruct 96:67–74

    Article  Google Scholar 

  32. Farhat A, Marques MAL, Abdul-Al SN (2014) Chem Phys 429:33–43

    Article  CAS  Google Scholar 

  33. Tie-Yu L, Mei-Chun H (2007) Chin Phys 16:62–66

    Article  Google Scholar 

  34. Amrane N (2009) Mater Chem Phys 114:283–289

  35. Ekuma CE, Bagayoko D, Jarrell M, Moreno J (2012) AIP Adv 2:032163

    Article  Google Scholar 

  36. Tahri S, Qteish A, Al-Qasir II, Meskini N (2012) J Phys Condens Matter 24:035401

    Article  Google Scholar 

  37. Asvini Meenaatci AT, Rajeswarapalanichamy R, Iyakutti K (2013) Phase Transit. 86(6):570–584

  38. Winiarski MJ, Kowalska DA (2020) J Alloy Compd 824:153961

    Article  CAS  Google Scholar 

  39. Yagoub R, Hadjfatah A, FaslaSL, Daoud S, Bahlouli S, Haichour A, Zegadi C (2020) J Nano-Electron Phys 12:05009

  40. Cherchab Y, Amrani B, Sekkal N, Ghezali M, Talbi K (2008) Physica E 40:606–617

    Article  CAS  Google Scholar 

  41. Talbi K, Cherchab Y, Sekkal N (2012) Eur Phys J Appl Phys 58:30103

    Article  Google Scholar 

  42. Louhadj A, Ghezali M, Badi F, Mehnane N, Cherchab Y, Amrani B, Abid H, Sekkal N (2009) Superlattice Microstruct 46:435–442

    Article  CAS  Google Scholar 

  43. Ul Haq B, Afaq A, Abdellatif G, Ahmed R, Naseem S, Khenata R (2015) Superlattice Microstruct 85:24–33

  44. Kerdsongpanya S, Alling B, Eklund P (2013) J Appl Phys 114:073512

    Article  Google Scholar 

  45. Cottenier S (2002) DFT and the family of (L) APW-methods: a step-by-step introduction, K.U. Leuven (http: / www. wien2k. at / reg_user / textbooks)

  46. Andersen OK (1975) Phys Rev B 42:3060

    Article  Google Scholar 

  47. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J (2001) WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna, Austria

    Google Scholar 

  48. Wu Z, Cohen RE (2006) Phys Rev B 73:235116

    Article  Google Scholar 

  49. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  Google Scholar 

  50. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    Article  CAS  Google Scholar 

  51. ICSD (2011) ICSD, Inorganic Crystal Structure Database (ICSD), National Institute of Standards and Technology (NIST) Release 2011/1, vol. 1 (NIST, 2011)

  52. Stampfl C, Mannstadt W, Asahi R, Freeman A (2001) Phys Rev B 63:155106

    Article  Google Scholar 

  53. Lambrecht WRL (2000) Phys Rev B 62:13538

    Article  CAS  Google Scholar 

  54. Adhikari V, Szymanski NJ, Khatri I, Gall D, Khare SV (2019) Thin Solid Films 688:137284

    Article  CAS  Google Scholar 

  55. Yurdasan NB, Gulebaglan SE, Tunali AY, Akyuz GB (2014) Philos Mag Lett 94:724–731

    Article  CAS  Google Scholar 

  56. Ghebouli MA, Ghebouli B, Zeghad A, Chihi T, Fatmi M, Ahmed SI (2021) J Mater Res Technol 14:1958-1968

  57. Born M, Huang K (1998) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  58. Voigt W (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig

    Google Scholar 

  59. Hadi MA, Naqib SH, Christopoulos SRG, Chronos A, Islam AKMA (2017) J Alloys Compd 724:1167

    Article  CAS  Google Scholar 

  60. Ali MA, Hossain MM, Hossain MA, Nasir MT, Uddin MM, Hasan MZ, Islam AKMA, Naqib SH (2018) J Alloys Compd 743:146

    Article  CAS  Google Scholar 

  61. Hadi MA, Roknuzzaman M, Chroneos A, Naqib SH, Islam AKMA, Vovk RV, Ostrikov K (2017) Comp Mater Sci 137:318

    Article  CAS  Google Scholar 

  62. Reuss A, Angew Z (1929) Math Mech 9:49–58

    CAS  Google Scholar 

  63. Hill R (1963) J Mech Phys Solids 11:357

    Article  Google Scholar 

  64. Jamal M, Asadabadi SJ, Ahmad I, Aliabad HAR (2014) Comput Mater Sci 95:592

    Article  CAS  Google Scholar 

  65. Pettifor DG (1992) Mater Sci Technol 8:345

    Article  CAS  Google Scholar 

  66. Teter D (1998) MRS Bull 23:22

    Article  CAS  Google Scholar 

  67. Chen XQ, Niu HY, Li DZ, Li YY (2011) Intermetallics 19:1275

    Article  CAS  Google Scholar 

  68. Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45:823–843

  69. Gall D, Petrov I, Hellgren N, Hultman L, Sundgren JE, Greene JE (1998) J Appl Phys 84:6034

  70. Brik MG (2010) J Phys Chem Solids 71:1435

    Article  CAS  Google Scholar 

  71. Frantsevich IN, Voronov FF, Bokuta SA (1983) Elastic Constants, and Elastic Moduli of Metals and Insulators Handbook (Kiev, Ukraine: NaukovaDumka, 1983) 60

  72. Anderson OL, Demarest HH Jr (1971) J Geophys Res 76:1349

    Article  CAS  Google Scholar 

  73. Tamleh S, Rezaei G, Jalilian J (2018) Phys Lett A 382:339–345

    Article  CAS  Google Scholar 

  74. Gall D et al (2001) Phys Rev B 63:125119

    Article  Google Scholar 

  75. Draxl CA (1998) R. Abt, ICTP lecture notes, unpublished

  76. Harbeke G (1972) In Optical properties of Solids: F. Abelès (Ed.), North-Holland, Amsterdam

  77. Moss TS (1950) Proc Phys Soc London B 63:167

    Article  Google Scholar 

  78. Ravindra NM, Auluck S, Srivastava VK (1979) Phys Status Solidi B 93:K155

    Article  CAS  Google Scholar 

  79. Reddy RR, Ahammed YN, Gopal KR, Raghuram DV (1998) Opt Mater 10:95–100

    Article  CAS  Google Scholar 

  80. Hervé PJL, Vandamme LKJ (1994) Infrared Phys Technol 35:609

    Article  Google Scholar 

  81. Penn DR (1962) Phys Rev 128:2093

    Article  CAS  Google Scholar 

  82. Blanco MA, Francisco E, Luaña V (2004) Comput Phys Commun 158:57

    Article  CAS  Google Scholar 

  83. Blanco MA, Martin Pendàs A, Francisco E, Recio JM, Franco R (1996) J Mol Struct Theochem 368:245

  84. FlorezM, Recio JM, Francisco E, Blanco MA, Martin Pendàs A (2002) Phys Rev B 66:144112

  85. Poirier JP (n.d.) Introduction to the Physics of the Earth’s Interior, Cambridge University Press, Oxford 39

  86. Debye P (1912) Ann Phys 344:789

    Article  Google Scholar 

  87. Petit AT, Dulong PL (1819) Ann Chem Phys 10:395

    Google Scholar 

  88. Moghaddam AO, Mikhailov D, Fereidonnejad R, Shaburova N, Vinnik D, Uchaev D, Bai F, Janas D, Trofimov E (2022) J Alloys Compd 912:165195

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the financial support of the General Direction of Scientific Research and Technological Development (DGRSDT). The author (Bakhtiar Ul Haq) extends his appreciation to the Deanship of Scientific Research at King Khalid University for funding his work through Research Groups Program under Grant No. R.G.P. 2/126/42.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Gagui, Ghemid, and Naeem. The first draft of the manuscript was written by Meradji, Ahmed, Kushwaha, and all authors commented on previous versions of the manuscript. Ul Haq and Meradji: supervising, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Gagui.

Ethics declarations

Ethics approval

All authors approve the ethics.

Consent to participate

All the authors agree to participate in this investigation.

Consent for publication

All authors give their consent for publication.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagui, S., Meradji, H., Ghemid, S. et al. Analysis of phase stability, elastic, electronic, thermal, and optical properties of Sc1-xYxN via ab initio methods. J Mol Model 29, 14 (2023). https://doi.org/10.1007/s00894-022-05412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05412-4

Keywords

Navigation