Log in

Phosphide in gallium bismuth: structural, electronic, elastic, and optical properties of GaPxBi1−x alloys

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

A Correction to this article was published on 23 June 2022

This article has been updated

Abstract

The structural, electronic, elastic, and optical properties of ternary alloys GaPxBi1−x as a function of phosphorus concentration were studied using ab initio calculations. We have used the full-potential linearized augmented plane wave method–based density functional theory. The potentials have been described by the generalized gradient and modified Becke-Johnson approximations. Results on lattice parameters, energy band gap, bulk modulus, elastic, and optical properties are reported. They are in good agreement with available theoretical and experimental data. Moreover, the dependence of structural and electronic properties on the composition has been analyzed. A deviation from linearity is observed for the lattice constant and the bulk modulus. In addition, the elastic constants and moduli were calculated and used to examine the mechanical stability. Both parts of dielectric-function and other optical parameters have been analyzed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Not applicable.

Change history

References

  1. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Nature 421:241

    Article  CAS  PubMed  Google Scholar 

  2. Wang J, Gudiksen MS, Duan X, Cui Y, Lieber CM (2001) Science 293:1455

    Article  CAS  PubMed  Google Scholar 

  3. Lai E, Kim W, Yang P (2008) Nano Res 1:123

    Article  CAS  Google Scholar 

  4. Huang Y, Duan X, Cui Y, Lieber CM (2002) Nano Lett 2:101

    Article  CAS  Google Scholar 

  5. Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nat Mater 4:455

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura K, Hashimoto T, Yasui T, Yoshimoto M, Matsunami H (2001) Appl Phys 40:1377

    CAS  Google Scholar 

  7. Humphreys R, Rössler U, Cardona M (1978) Phys Rev B 18:5590

    Article  CAS  Google Scholar 

  8. Lorenz M, Pettit G, Taylor R (1968) Phys Rev 171:876

    Article  CAS  Google Scholar 

  9. Jiao ZY, Ma SH, Guo YL (2011) Comput. Theor Chem 970:79

    Article  CAS  Google Scholar 

  10. Kyser D, Rehn V (1978) Phys Rev Lett 40:1038

    Article  CAS  Google Scholar 

  11. Achour H, Louhibi S, Amrani B, Tebboune A, Sekkal N (2008) Superlattices Microstruct 44:223

    Article  CAS  Google Scholar 

  12. Liu W, Zheng W, Jiang Q (2007) Phys Rev B 75:235322

    Article  Google Scholar 

  13. Ferhat M, Zaoui A (2006) Phys Rev B 73:115107

    Article  Google Scholar 

  14. Henry T, Kim K, Ren Z, Yerino C, Han J, Tang HX (2007) Nano Lett 7:3315

    Article  CAS  PubMed  Google Scholar 

  15. Tsakalakos L, Balch J, Fronheiser J, Korevaar BA, Sulima O, Rand J (2007) Appl Phys Lett 91:233117

    Article  Google Scholar 

  16. Madelung O (1996) Physical data In Semiconductors-Basic Data. Springer-Verlag, New York, pp 5–298

    Book  Google Scholar 

  17. Phillips JC (1973) Bond and bands in semiconductors. Academic, New York, London

    Google Scholar 

  18. Ferhat M, Zaoui A (2006) Phys Rev B 73:11517

    Article  Google Scholar 

  19. Zaoui A, El hadj Hassan F (2001) Phys Condens. Matter 13:253

    CAS  Google Scholar 

  20. Merabet M, Benalia S, Rached D, Khenata R, Bouhemadou A, Bin Omran S, Reshak AH, Rabah M (2011) Superlattices Microstruct 49:135

    Article  Google Scholar 

  21. Reshak AH, Kamarudin H, Auluck S, Kityk IV (2012) J Solid State Chem 186:47

    Article  CAS  Google Scholar 

  22. Wang SQ, Ye H (2002) Phys Rev B 66:235111

    Article  Google Scholar 

  23. Huawei Cao, Pengfei Lu, **anlong Zhang, Zhongyuan Yu, LihongHan, Jun Chen, Shumin Wang (2014) Superlattices Microstruct 67:25

  24. Ul Haq B, Ahmed R, Mohamad M, Shaari A, Rhee J, Alfaifi S, Benali Kanoun M, Goumri-Said S (2017) Curr Appl Phys 17:162

    Article  Google Scholar 

  25. Froyen S, Cohen ML (1983) Physical Rev B 28:3258

    Article  CAS  Google Scholar 

  26. Weil R, Groves WO (1968) Appl Phys 39:4049

    Article  CAS  Google Scholar 

  27. Wang SQ, Ye HQ (2003) Phys Status Solidi B 240:45

    Article  CAS  Google Scholar 

  28. Aspnes DE, Studna A (1983) Phys Rev B 27:985

    Article  CAS  Google Scholar 

  29. Hoat DM, RivasSilva JF, MéndezBlas A (2018) Phys Lett A 382:1942

    Article  CAS  Google Scholar 

  30. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, Schwarz K (2008) An augmented plane wave plus local orbitals program for calculating crystal properties: Wien2K User’s Guide. Universitat Wien, Techn

    Google Scholar 

  31. Hohenberg P, Kohn W (1964) Phys Rev B 136:864

    Article  Google Scholar 

  32. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  33. Anderson OK (1975) Phys Rev B 42:3060

    Article  Google Scholar 

  34. Wu Z, Cohen RE (2006) Phys Rev B 73:235116

    Article  Google Scholar 

  35. Tran F, Blaha P (2009) Phys Rev Lett 102:226401

    Article  PubMed  Google Scholar 

  36. Tran F, Blaha P (2011) Phys Rev B 83:235118

    Article  Google Scholar 

  37. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Degheidy AR, Elkenany EB (2013) Mater Chem Phys 143:1

    Article  CAS  Google Scholar 

  39. Levinstein M, Rumyantsev S, Shur M (1996) Handbook Series on Semiconductor Parameters, World Scientific, Singapore, Vols. 1 and 2

  40. Vegard L (1921) Phys 5:17

    CAS  Google Scholar 

  41. Jobst J, Hommel D, Lunz U, Gerhard T, Landwehr G (1996) Appl Phys Lett 69:97

    Article  CAS  Google Scholar 

  42. El Haj HF (2005) Phys Status Solidi B 242:909

    Article  Google Scholar 

  43. Bagci S, Yalcin BG (2015) J Phys D: Appl Phys 48:475304

    Article  Google Scholar 

  44. Oganov AR, Brodholt JP, Price GD (2002) EMU Notes in Mineralogy 4:170

    Google Scholar 

  45. Wu Q, Li S (2012) Comput Mater Sci 53:436

    Article  CAS  Google Scholar 

  46. Reuss A, Angew Z (1929) Math Mech 9:49

    CAS  Google Scholar 

  47. Voigt W (1928) Lehrbuch der Kristallphysik. Teubner Verlag Leipzig p 739

  48. Razumovskiy VI, Isaev EI, Ruban AV, Korzhavyi PA (2008) Intermetallics 16:982

    Article  CAS  Google Scholar 

  49. Huang B, Duan YH, Hu WC, Sun Y, Chen S (2015) Ceram Int 41:6831

    Article  CAS  Google Scholar 

  50. Christman JR (1988) Fundamentals of solid state physics. John Wiley and Sons, New York

    Google Scholar 

  51. Mehl M J, Barry B M,. Papaconstantopoulos D A, Westbrook in: J.H., Fleischeir R.L. (1995), Intermetallic compounds: principle and practice, principles, John Wiley and Sons, London .vol.1 195–210

  52. Hashin Z, Shtrikman S, Mech J (1962) Phys Solids 10:335

    Article  Google Scholar 

  53. Schreiber E, Anderson OL, Soga N (1973) Elastic constants and their measurement. McGraw-Hill, Companies Inc, New York

    Google Scholar 

  54. Adachi S (1992) Physical properties of III–V semiconductor compounds. Wiley, New York

    Book  Google Scholar 

  55. Yu P Y, Cardona M (1999) Fundamentals of semiconductors, physics and materials properties (Berlin: Springer) p233

  56. Delin A, Eriksson AO, Ahuja R, Johansson B, Brooks MS, Gasche T, Auluck S, Wills JM (1996) Phys Rev B 54:1673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Bin Omran acknowledges Researchers Supporting Project number (RSP-2021/82), King Saud University, Riyadh, Saudi Arabia.

Funding

This study received financial support from the General Direction of Scientific Research and Technological Development (DGRSDT).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Ghemid, Khenata, Boumaza, and Badi. The first draft of the manuscript was written by Meradji, Touam, and Mounis and all authors commented on previous versions of the manuscript. Bin Omran and Kushwaha: supervising, reviewing, and editing. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to H. Meradji or R. Khenata.

Ethics declarations

Consent for publication

All authors approve the ethics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to minor changes in the last author name.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touam, S., Mounis, N., Boumaza, A. et al. Phosphide in gallium bismuth: structural, electronic, elastic, and optical properties of GaPxBi1−x alloys. J Mol Model 28, 182 (2022). https://doi.org/10.1007/s00894-022-05167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-022-05167-y

Keywords

Navigation