Log in

Reliability of semiempirical and DFTB methods for the global optimization of the structures of nanoclusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, we explore the possibility of using computationally inexpensive electronic structure methods, such as semiempirical and DFTB calculations, for the search of the global minimum (GM) structure of chemical systems. The basic prerequisite that these inexpensive methods will need to fulfill is that their lowest energy structures can be used as starting point for a subsequent local optimization at a benchmark level that will yield its GM. If this is possible, one could bypass the global optimization at the expensive method, which is currently impossible except for very small molecules. Specifically, we test our methods with clusters of second row elements including systems of several bonding types, such as alkali, metal, and covalent clusters. The results reveal that the DFTB3 method yields reasonable results and is a potential candidate for this type of applications. Even though the DFTB2 approach using standard parameters is proven to yield poor results, we show that a re-parametrization of only its repulsive part is enough to achieve excellent results, even when applied to larger systems outside the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wales DJ, Hodges MP (1998) Chem Phys Lett 286:65

    CAS  Google Scholar 

  2. Mitchell M (1998) An introduction to genetic algorithms. MIT Press, Cambridge, MA

    Google Scholar 

  3. Call ST, Zubarev DY, Boldyrev AI (2007) J Comput Chem 28:1177

    CAS  PubMed  Google Scholar 

  4. Wales DJ, Doye JPK (1997) J Phys Chem A 101:5111

    CAS  Google Scholar 

  5. Silva MX, Galvão BRL, Belchior JC (2014) Phys Chem Chem Phys 16:8895

    CAS  PubMed  Google Scholar 

  6. Paiva MAM, Peluzo BMTC, Belchior JC, Galvão BRL (2016) Phys Chem Chem Phys 18:31579

    CAS  PubMed  Google Scholar 

  7. Silva FT, Galvão BRL, Voga GP, Silva MX, Rodrigues DDC, Belchior JC (2015) Chem Phys Lett 639:135

    CAS  Google Scholar 

  8. Silveira ADP, Gomes ACR, Galvão BRL (2018) Phys Chem Chem Phys 20:17464

    CAS  PubMed  Google Scholar 

  9. Varandas AJC (2018) Eur Phys J D 72:134

    Google Scholar 

  10. Heiles S, Logsdail AJ, Schäfer R, Johnston RL (2012) Nanoscale 4:1109

    CAS  PubMed  Google Scholar 

  11. Forck RM, Dieterich JM, Pradzynski CC, Huchting AL, Mata RA, Zeuch T (2012) Phys Chem Chem Phys 14:9054

    CAS  PubMed  Google Scholar 

  12. Farrow MR, Chow Y, Woodley SM (2014) Phys Chem Chem Phys 16:21119

    CAS  PubMed  Google Scholar 

  13. Yang M, Jackson KA, Koehler C, Frauenheim T, Jellinek J (2006) J Chem Phys 124:024308

    PubMed  Google Scholar 

  14. Tarrat N, Rapacioli M, Cuny J, Morillo J, Heully J-L, Spiegelman F (2017) Comput Theor Chem 1107:102. structure prediction of nanoclusters from global optimization techniques: computational strategies

    CAS  Google Scholar 

  15. Galvão BRL, Viegas LP (2019) J Phys Chem A 123:10454

    PubMed  Google Scholar 

  16. Aikens CM, Webb SP, Bell RL, Fletcher GD, Schmidt MW, Gordon MS (2003) Theor Chem Acc 110:233

    CAS  Google Scholar 

  17. Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244

    CAS  Google Scholar 

  18. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  19. Piecuch P, Kucharski S, Kowalski K, Musial M (2002) Comp Phys Comm 149:71

    CAS  Google Scholar 

  20. Bentz JL, Olson RM, Gordon MS, Schmidt MW, Kendall RA (2007) Comp Phys Comm 176:589

    CAS  Google Scholar 

  21. Olson RM, Bentz JL, Kendall RA, Schmidt MW, Gordon MS (2007) J Chem Theory Comput 3:1312

    Google Scholar 

  22. Varandas AJC (2007) J Chem Phys 126:244105

    CAS  PubMed  Google Scholar 

  23. Varandas AJC, Pansini FNN (2014) J Chem Phys 141:224113

    CAS  PubMed  Google Scholar 

  24. Pansini FNN, Neto AC, Varandas AJC (2016) Theor Chem Acc 135:261

    Google Scholar 

  25. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery J Jr (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  26. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111:5678

    CAS  PubMed  Google Scholar 

  27. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7:931

    CAS  Google Scholar 

  28. Lourenço MP, da Silva MC, Oliveira AF, Quinto MC, Duarte HA (2016) Theor Chem Acc 135:1432

    Google Scholar 

  29. Lourenço MP, de Oliveira C, Oliveira AF, Guimarães L, Duarte HA (2012) J. Phys. Chem. C 116:9405

    Google Scholar 

  30. Lourenço MP, Guimarães L, da Silva MC, de Oliveira C, Heine T, Duarte HA (2014) J Phys Chem C 118:5945

    Google Scholar 

  31. Guimarães L, Enyashin AN, Frenzel J, Heine T, Duarte HA, Seifert G (2007) ACS Nano 1:362

    PubMed  Google Scholar 

  32. Gaus M, Goez A, Elstner M (2013) J Chem Theory Comput 9:338

    CAS  PubMed  Google Scholar 

  33. Gaus M, Lu X, Elstner M, Cui Q (2014) J Chem Theory Comput 10:1518

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu X, Gaus M, Elstner M, Cui Q (2015) J Phys Chem B 119:1062

    CAS  PubMed  Google Scholar 

  35. Kubillus M, Kubař T, Gaus M, Řezáč J, Elstner M (2015) J Chem Theory Comput 11:332

    CAS  PubMed  Google Scholar 

  36. dftb.org: the dftb website, http://www.dftb.org/, note = Accessed: 2020-04-24

  37. Lourenço MP, dos Santos EC, Pettersson LGM, Duarte HA (2020) J Chem Theory Comput 16:1768

    PubMed  Google Scholar 

  38. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    CAS  Google Scholar 

  39. Stewart JJP (1989a) J Comp Phys 10:209

    CAS  Google Scholar 

  40. Stewart JJP (1989b) J Comp Phys 10:221

    CAS  Google Scholar 

  41. Dewar MJS, Jie C (1989) J Mol Struct Theochem 187:1

    Google Scholar 

  42. Brothers EN, Merz KM (2002) J Phys Chem B 106:2779

    CAS  Google Scholar 

  43. Hutter MC, Reimers JR, Hush NS (1998) J Phys Chem B 102:8080

    CAS  Google Scholar 

  44. Dewar MJS, Holder AJ (1990) Organometallics 9:508

    CAS  Google Scholar 

  45. Dewar MJS, Jie C (1987) Organometallics 6:1486

    CAS  Google Scholar 

  46. Vilhelmsen LB, Hammer B (2014) J Chem Phys 141:044711

    PubMed  Google Scholar 

  47. Viegas LP (2018) J Phys Chem A 122:9721

    CAS  PubMed  Google Scholar 

  48. Vásquez-Pérez JM, Martínez GUG, Köster AM, Calaminici P (2009) J Chem Phys 131:124126

    PubMed  Google Scholar 

  49. Marques JMC, Llanio-Trujillo JL, Abreu PE, Pereira FB (2010) J Chem Inf Model 50:2129

    CAS  PubMed  Google Scholar 

  50. Fasp web site: Framework for automationof slater-koster file parameterization, http://fasp.alegre.ufes.br, accessed: 2020-04-24

  51. Te Velde GT, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Google Scholar 

  52. Oliveira AF, Seifert G, Heine T, Duarte HAA (2009) J Braz Chem Soc 20:1193

    CAS  Google Scholar 

  53. Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M (2020) Adv Phys-X 5:1710252

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Oliveira AF, Philipsen P, Heine T (2015) J Chem Theory Comput 11:5209

    CAS  PubMed  Google Scholar 

  55. Gruden M, Andjeklovié L, Jissy AK, Stepanovié S, Zlatar M, Cui Q, Elstner M (2017) J Comput Chem 38:2171

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun WG, Wang JJ, Lu C, **a XX, Kuang XY, Hermann A (2017) Inorg Chem 56:1241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Compute Canada/WestGrid for computational resources. The support of Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) and Rede Mineira de Química (RQ-MG) are also acknowledged. We acknowledge Prof. Hélio A. Duarte for providing the Acqua computational resources to use the Amsterdam Density Functional (ADF) software to obtain the repulsive potentials and the ACQUA-INCT (http://www.acqua-inct.org).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - grants 403352/2016-9 and 305469/2018-5, Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) - grant CEX - APQ-00071-15, and Fundação de Amparo à Pesquisa do Espírito Santo (FAPES) - project CNPq/FAPES PPP 22/2018. DRS thanks NSERC-Canada for ongoing Discovery Grants. LPV thanks the funding from Coimbra Chemistry Center through the CQC-SER-C2-BPD research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Breno R. L. Galvão.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: XX-Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão, B.R.L., Viegas, L.P., Salahub, D.R. et al. Reliability of semiempirical and DFTB methods for the global optimization of the structures of nanoclusters. J Mol Model 26, 303 (2020). https://doi.org/10.1007/s00894-020-04484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04484-4

Keywords

Navigation