Log in

DFT study of benzyl alcohol/TiO2 interfacial surface complex: reaction pathway and mechanism of visible light absorption

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We propose a new pathway for the adsorption of benzyl alcohol on the surface of TiO2 and the formation of interfacial surface complex (ISC). The reaction free energies and reaction kinetics were thoroughly investigated by density functional calculations. The TiO2 surfaces were modeled by clusters consisting of 4 Ti atoms and 18 O atoms passivated by H, OH group and H2O molecules. Compared with solid-state calculations utilizing the periodicity of the materials, such cluster modeling allows inclusion of the high-order correlation effects that seem to be essential for the adsorption of organic molecules onto solid surfaces. The effects of both acidity and solvation are included in our calculations, which demonstrate that the new pathway is competitive with a previous pathway. The electronic structure calculations based on the relaxed ISC structures reveal that the chemisorption of benzyl alcohol on the TiO2 surface greatly alters the nature of the frontier molecular orbitals. The resulted reduced energy gap in ISC matches the energy of visible light, showing how the adsorption of benzyl alcohol sensitizes the TiO2 surface.

The chemisorption of benzyl alcohol on TiO2 surface greatly alters the nature of the frontier molecular orbitals and the formed interfacial surface complex can be sensitized by visible light

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu W, Qiu X, Iancu V, Chen X-Q, Pan H, Wang W, Dimitrijevic NM, Rajh T, Meyer III HM, Paranthaman MP (2009) Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codo** for enhanced visible-light photoactivity. Phys Rev Lett 103(22):226401

    Article  Google Scholar 

  2. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  3. Chen C, Ma W, Zhao J (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219

    Article  CAS  Google Scholar 

  4. Zhang M, Chen C, Ma W, Zhao J (2008) Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew Chem 120(50):9876–9879

    Article  Google Scholar 

  5. Higashimoto S (2016) Surface-functionalized TiO2 Photocatalyst modified by the interfacial surface complex (ISC). In: Yamashita H, Li H (eds) Nanostructured photocatalysts. Springer, Cham, pp 211–225

    Chapter  Google Scholar 

  6. Liu Y, Dadap J, Zimdars D, Eisenthal KB (1999) Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation. J Phys Chem B 103(13):2480–2486

    Article  CAS  Google Scholar 

  7. Rodrìguez R, Blesa MA, Regazzoni AE (1996) Surface complexation at the TiO2 (anatase)/aqueous solution interface: chemisorption of catechol. J Colloid Interface Sci 177(1):122–131

    Article  Google Scholar 

  8. Kim S, Choi W (2005) Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path. J Phys Chem B 109(11):5143–5149

    Article  CAS  Google Scholar 

  9. Agrios AG, Gray KA, Weitz E (2003) Photocatalytic transformation of 2,4,5-trichlorophenol on TiO2 under sub-band-gap illumination. Langmuir 19(4):1402–1409

    Article  CAS  Google Scholar 

  10. Agrios AG, Gray KA, Weitz E (2004) Narrow-band irradiation of a homologous series of chlorophenols on TiO2: charge-transfer complex formation and reactivity. Langmuir 20(14):5911–5917

    Article  CAS  Google Scholar 

  11. Higashimoto S, Kitao N, Yoshida N, Sakura T, Azuma M, Ohue H, Sakata Y (2009) Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J Catal 266(2):279–285

    Article  CAS  Google Scholar 

  12. Kobayashi H, Higashimoto S (2015) DFT study on the reaction mechanisms behind the catalytic oxidation of benzyl alcohol into benzaldehyde by O2 over anatase TiO2 surfaces with hydroxyl groups: role of visible-light irradiation. Appl Catal B Environ 170:135–143

    Article  Google Scholar 

  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara KT M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda OK Y, Nakai H, Vreven T, Montgomery Jr JA, Peralta FO JE, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox ADJ (2013) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  14. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts: Theory Comput Model (Theor Chim Acta) 120(1):215–241

    Article  CAS  Google Scholar 

  15. Zhang J-Z, Zhang J, Li H-B, Wu Y, Xu H-L, Zhang M, Geng Y, Su Z-M (2014) Modulation on charge recombination and light harvesting toward high-performance benzothiadiazole-based sensitizers in dye-sensitized solar cells: a theoretical investigation. J Power Sources 267:300–308

    Article  CAS  Google Scholar 

  16. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125(19):194101

    Article  Google Scholar 

  17. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82(1):270–283

    Article  CAS  Google Scholar 

  18. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  20. Burke K, Perdew JP, Wang Y (1998) Derivation of a generalized gradient approximation: the PW91 density functional. In: Seminario JM (ed) Electronic density functional theory. Springer, Berlin , pp 81–111

    Chapter  Google Scholar 

  21. Andreev AS, Kuznetsov VN, Chizhov YV (2013) DFT model cluster studies of O2 adsorption on hydrogenated titania sub-nanoparticles. J Mol Model 19(11):5063–5073

    Article  CAS  Google Scholar 

  22. Legault CY (2009) CYLview, 1.0 b. University of Sherbrooke

  23. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  25. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63(15):155409

    Article  Google Scholar 

  26. He G, Pan G, Zhang M, Waychunas GA (2011) Coordination structure of adsorbed Zn (II) at water−TiO2 interfaces. Environ Sci Technol 45(5):1873–1879

    Article  CAS  Google Scholar 

  27. He G, Pan G, Zhang M (2011) Studies on the reaction pathway of arsenate adsorption at water–TiO2 interfaces using density functional theory. J Colloid Interface Sci 364(2):476–481

    Article  CAS  Google Scholar 

  28. Homann T, Bredow T, Jug K (2004) Adsorption of small molecules on the anatase (100) surface. Surf Sci 555(1):135–144

    Article  CAS  Google Scholar 

  29. Hu Z, Turner CH (2007) Atomic layer deposition of TiO2 from TiI4 and H2O onto SiO2 surfaces: ab initio calculations of the initial reaction mechanisms. J Am Chem Soc 129(13):3863–3878

    Article  CAS  Google Scholar 

  30. He G, Zhang M, Pan G (2009) Influence of pH on initial concentration effect of arsenate adsorption on TiO2 surfaces: thermodynamic, DFT, and EXAFS interpretations. J Phys Chem C 113(52):21679–21686

    Article  CAS  Google Scholar 

  31. Paul KW, Kubicki JD, Sparks DL (2006) Quantum chemical calculations of sulfate adsorption at the Al-and Fe-(hydr) oxide-H2O interface estimation of Gibbs free energies. Environ Sci Technol 40(24):7717–7724

    Article  CAS  Google Scholar 

  32. Sherman DM, Randall SR (2003) Surface complexation of arsenic (V) to iron (III)(hydr) oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta 67(22):4223–4230

    Article  CAS  Google Scholar 

  33. Lu T, Manzetti S (2014) Wavefunction and reactivity study of benzo [a] pyrene diol epoxide and its enantiomeric forms. Struct Chem 25(5):1521–1533

    Article  CAS  Google Scholar 

  34. Calatayud M, Minot C (2004) Effect of relaxation on structure and reactivity of anatase (100) and (001) surfaces. Surf Sci 552(1):169–179

    CAS  Google Scholar 

  35. Nosaka AY, Nishino J, Fujiwara T, Ikegami T, Yagi H, Akutsu H, Nosaka Y (2006) Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO2 photocatalytic systems. J Phys Chem B 110(16):8380–8385

    Article  CAS  Google Scholar 

  36. Deiana C, Fois E, Coluccia S, Martra G (2010) Surface structure of TiO2 P25 nanoparticles: infrared study of hydroxy groups on coordinative defect sites. J Phys Chem C 114(49):21531–21538

    Article  CAS  Google Scholar 

  37. Guo C, Ge M, Liu L, Gao G, Feng Y, Wang Y (2009) Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol a degradation. Environ Sci Technol 44(1):419–425

    Article  Google Scholar 

  38. Murakami Y, Kenji E, Nosaka AY, Nosaka Y (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110(34):16808–16811

    Article  CAS  Google Scholar 

  39. Park JS, Choi W (2005) Remote photocatalytic oxidation mediated by active oxygen species penetrating and diffusing through polymer membrane over surface fluorinated TiO2. Chem Lett 34(12):1630–1631

    Article  CAS  Google Scholar 

  40. Park JS, Choi W (2004) Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2. Langmuir 20(26):11523–11527

    Article  CAS  Google Scholar 

  41. Kim W, Tachikawa T, Moon G, Majima T, Choi W (2014) Molecular-level understanding of the photocatalytic activity difference between Anatase and rutile nanoparticles. Angew Chem Int Ed 53(51):14036–14041

    Article  CAS  Google Scholar 

  42. Andreev AS, Kuznetsov VN, Chizhov YV (2012) Atomic hydrogen activated TiO2 nanocluster: DFT calculations. J Phys Chem C 116(34):18139–18145

    Article  CAS  Google Scholar 

  43. Li R, Kobayashi H, Guo J, Fan J (2011) Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: a self-adjustable photo-oxidation system with controllable hole-generation. J Phys Chem C 115(47):23408–23416

    Article  CAS  Google Scholar 

  44. Wu H, Wang LS (1997) Electronic structure of titanium oxide clusters: TiOy (y= 1–3) and (TiO2)n (n= 1–4). J Chem Phys 107(20):8221–8228

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of the National Natural Science Foundation of China (21273081) is greatly appreciated. Financial support from the Project supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2011) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Long Gu.

Electronic supplementary material

ESM 1

(DOCX 4.24 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Gu, F.L., Kim, M. et al. DFT study of benzyl alcohol/TiO2 interfacial surface complex: reaction pathway and mechanism of visible light absorption. J Mol Model 23, 285 (2017). https://doi.org/10.1007/s00894-017-3451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3451-4

Keywords

Navigation