Log in

Sequential metalation of benzene: electronic, bonding, magnetotropic and spectroscopic properties of coinage metalated benzenes studied by DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

An Erratum to this article was published on 12 June 2015

Abstract

A series of coinage metalated benzenes formulated as C6H6-nMn (M = Cu, Ag, Au, n = 1–5) were investigated by means of density functional theory (DFT) calculations. The structural, energetic, magnetotropic and spectroscopic properties of the coinage metalated benzenes were analyzed thoroughly and compared to the respective properties of the archetype aromatic benzene molecule. In contrast to the latter, the C6H6-nMn (M = Cu, Ag, Au, n = 1–5) molecules are predicted to be aromatic even in their excited triplet state. Excellent linear correlations between (I) the zz component of the nucleus independent chemical shift [NICSzz(1)] values and the total negative natural charge acquired by the carbocyclic ring, and (ii) the NICSzz(1) vs wavelength (λ) of the HOMO → LUMO transitions in the absorption spectra of the coinage metalated benzenes were established. The emission spectra of the coinage metalated benzenes were characterized by high \( \varDelta {E}_{\left({\mathrm{S}}_0-{\mathrm{T}}_1\right)} \) values, particularly for the di-substituted — and p-isomers, with the highest \( \varDelta {E}_{\left({\mathrm{S}}_0-{\mathrm{T}}_1\right)} \) value of 67 kcal mol−1 calculated for the m-M6H4Au2 species. The bonding pattern of the coinage metalated benzenes was analyzed thoroughly by means of a multitude of electronic structure calculation methods [natural bond orbital (NBO), atoms-in-molecules (AIM), electron localization function (ELF), reduced density gradient (RDG) and Sign(λ 2(r))ρ(r) functions]. Our findings indicate whole classes of new coinage metalated benzenes (mono-, di-, tri-, four- and five-substituted) opening a new chemistry for the coinage metalated benzenes, indicating that their chemistry will be worthwhile studying both experimentally and theoretically in the future.

The complete series of coinage metalated benzenes were investigated by density functional theory methods. The structural, energetic, bonding, magnetotropic and spectroscopic properties of the coinage metalated benzenes were analyzed thoroughly. In contrast to the archetype aromatic benzene molecule, the coinage metalated benzenes are predicted to be aromatic even in their excited triplet state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Scheme 3
Fig. 12
Fig. 13a–c

Similar content being viewed by others

References

  1. Mallan JM, Bebb RL (1969) Chem Rev 69:693

    Article  CAS  Google Scholar 

  2. Snieckus V (1990) Chem Rev 90:879

    Article  CAS  Google Scholar 

  3. Wakefield BJ (1988) Organolithium methods. Academic, London

    Google Scholar 

  4. Wietelmann U, Bauer RJ (2005) Lithium and lithium compounds. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi:10.1002/14356007.a15_393

    Google Scholar 

  5. Eisch JJ (2002) Organometallics 21:5439

    Article  CAS  Google Scholar 

  6. Omae I (1979) Chem Rev 79:287

    Article  CAS  Google Scholar 

  7. Parham WE, Bradsher CK (1982) Acc Chem Res 15:300

    Article  CAS  Google Scholar 

  8. Beak P, Snieckus V (1982) Acc Chem Res 15:306

    Article  CAS  Google Scholar 

  9. Narashimhan NS, Mali RS (1983) Synthesis 957

  10. Beak P, Meyers AI (1986) Acc Chem Res 19:356

    Article  CAS  Google Scholar 

  11. Bailey WF, Patricia JJ (1988) J Organomet Chem 352:1

    Article  CAS  Google Scholar 

  12. Wakefield BJ (1990) Organolithium methods. Academic, London

    Google Scholar 

  13. Wakefield BJ (1990) The chemistry of organolithium compounds, 2nd edn. Pergamon, New York

  14. Comins DL (1992) Synlett 615

  15. Wiberg KB, Sklenak S, Bailey WF (2000) J Org Chem 65:2014

    Article  CAS  Google Scholar 

  16. van Eikema HNJR, Schleyer PR (1992) Angew Chem Int Ed Engl 31:755

    Article  Google Scholar 

  17. Chadwick ST, Rennels RA, Rutherford JL, Collum DB (2000) J Am Chem Soc 122:8640

    Article  CAS  Google Scholar 

  18. Betz J, Bauer W (2002) J Am Chem Soc 124:8699

    Article  CAS  Google Scholar 

  19. Saá JM (2002) Helv Chim Acta 85:814

    Article  Google Scholar 

  20. Slocum DW, Dumbris S, Brown S, Jackson G, LaMastus R, Mullins E, Ray J, Shelton P, Walstrom A, Wilcox JM, Holman RW (2003) Tetrahedron 59:8275

    Article  CAS  Google Scholar 

  21. van Eikema Hommes NJR, Schleyer PR (1994) Tetrahedron 50:5903

    Article  Google Scholar 

  22. Saá JM, Martorell G, Frontera A (1996) J Org Chem 61:5194

    Article  Google Scholar 

  23. Bachrach SM, Hare M, Kass SR (1998) J Am Chem Soc 120:12646

    Article  CAS  Google Scholar 

  24. Bachrach SM, Miller JV Jr (2002) J Org Chem 67:7389

    Article  CAS  Google Scholar 

  25. Bachrach SM, Chamberlin AC (2004) J Org Chem 69:2111

    Article  CAS  Google Scholar 

  26. Baran JR Jr, Lagow RJ (1990) J Am Chem Soc 112:9415

    Article  CAS  Google Scholar 

  27. Baran JR Jr, Hendrickson C, Laude DA Jr, Lagow RJ (1992) J Org Chem 57:3759

    Article  CAS  Google Scholar 

  28. Stucky GD, Rundle RE (1963) J Am Chem Soc 85:1002

    Article  CAS  Google Scholar 

  29. Kur SA, Heeg MJ, Winter CH (1994) Organometallics 13:1865

    Article  CAS  Google Scholar 

  30. Nesmeyanov AN, Anisimov KN, Valueva EP (1962) Izv Akad Nauk SSSR, Ser Khim 1683

  31. Kovar RF, Rausch MD (1973) J Org Chem 38:1918

    Article  CAS  Google Scholar 

  32. Perevalova EG, Shumilina EV, Leontéva LI (1978) Izv Akad Nauk SSSR, Ser Khim 1438

  33. Reich K (1923) Compt Rendus Geosci 177:322

    CAS  Google Scholar 

  34. Gilman H, Straley JM (1936) Rec Trav Chim 55:821

    Article  CAS  Google Scholar 

  35. Gilman H, Jones RG, Woods LA (1952) J Org Chem 17:1630

    Article  CAS  Google Scholar 

  36. Gilman H, Woods LA (1943) J Am Chem Soc 65:435

    Article  CAS  Google Scholar 

  37. Bolth FA, Whaley WM, Starkey EB (1943) J Am Chem Soc 65:1456

    Article  CAS  Google Scholar 

  38. Bolth FA, Whaley WM, Starkey EB (1946) J Am Chem Soc 68:793

    Article  Google Scholar 

  39. Warf JC (1952) J Am Chem Soc 74:3702

    Article  CAS  Google Scholar 

  40. Bertz SH, Dabbagh G (1993) J Am Chem Soc 115:11640

    Article  CAS  Google Scholar 

  41. Frański R, Kozik T, Staniszewski B, Urbaniak W (2010) Cent Eur J Chem 8:508

    Article  Google Scholar 

  42. He X, Ruhlandt-Senge K, Power PP, Bertz SH (1994) J Am Chem Soc 116:6963

    Article  CAS  Google Scholar 

  43. Krause E, Wendt B (1923) Ber 56:2054

    Google Scholar 

  44. Reich RC (1923) R Acad Sci Paris 177:322

    CAS  Google Scholar 

  45. Gilman H, Straley JM (1936) Recl Trav Chim Pays-Bas 55:821

    Article  CAS  Google Scholar 

  46. Hasizimoto H, Nakano T (1966) J Org Chem 31:891

    Article  Google Scholar 

  47. Beverwijk CDM, van der Kerk GJM, Leusink AJ, Noltes JG (1970) Organometal Chem Rev A 5:215

    CAS  Google Scholar 

  48. Sun S, **ng X, Liu H, Tang Z (2005) J Phys Chem A 109:11742

    Article  CAS  Google Scholar 

  49. Liu X-J, Zhang X, Han K-L, **ng X-P, Sun S-T, Tang Z (2007) J Phys Chem A 111:3248

    Article  CAS  Google Scholar 

  50. Liu X-J, Yang C-L, Zhang X, Han K-L, Tang Z-C (2008) J Comput Chem 29:1667–1674

    Article  CAS  Google Scholar 

  51. **e Y, Schaefer HF III (1991) Chem Phys Let 179:563

    Article  CAS  Google Scholar 

  52. Smith BJ (1993) Chem Phys Let 207:403

    Article  CAS  Google Scholar 

  53. Moreno D, Martínez-Guajardo G, Díaz-Celaya A, Mercero JM, de Coss R, Perez-Peralta N, Merino G (2013) Chemistry A Eur J 19:12668–12672

    Article  CAS  Google Scholar 

  54. Raptis SG, Papadopoulos MG, Sadlej AJ (2000) Phys Chem Chem Phys 2:3393

    Article  CAS  Google Scholar 

  55. Giri S, Lund F, Núñez AS, Toro-Labbé A (2013) J Phys Chem C 117:5544

    Article  CAS  Google Scholar 

  56. Tsipis AC (2012) Organometallics 31:7206

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford

  58. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  59. Adamo C, Barone V (1997) Chem Phys Lett 274:242

    Article  CAS  Google Scholar 

  60. Adamo C, Barone V (1999) J Chem Phys 110:6160

    Article  Google Scholar 

  61. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889

    Article  CAS  Google Scholar 

  62. Adamo C, Barone V (2000) Theor Chem Acc 105:169

    Article  CAS  Google Scholar 

  63. Veter V, Adamo C, Maldivi P (2000) Chem Phys Lett 325:99

    Article  Google Scholar 

  64. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  65. Weinhold F (1998) In: Schleyer PR (ed) The Encyclopedia of Computational Chemistry. Wiley, Chichester, UK, p 1792

  66. NBO 6.0. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Landis CR, Weinhold F Theoretical Chemistry Institute, University of Wisconsin, Madison 2013

  67. Ditchfield R (1974) Mol Phys 27:789

    Article  CAS  Google Scholar 

  68. Gauss J (1993) J Chem Phys 99:3629

    Article  CAS  Google Scholar 

  69. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJ (1996) J Am Chem Soc 118:6317

    Article  CAS  Google Scholar 

  70. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  71. Bader RFW (1998) J Phys Chem A 102:7314

    Article  CAS  Google Scholar 

  72. Lu T, Chen F (2012) J Comp Chem 33:580

    Article  Google Scholar 

  73. Lu T, Chen F (2012) J Mol Graph Model 38:314

    Article  Google Scholar 

  74. Pyykkö P, Zhao Y-F (1991) Chem Phys Let 177:103–106

    Article  Google Scholar 

  75. Schmidbauer H, Gabaï FP, Schier A, Riede J (1995) Organometallics 14:4969–4971

    Article  Google Scholar 

  76. Pyykkö P, Tamm T (1998) Organometallics 17:4842–4852

    Article  Google Scholar 

  77. Kiran B, Li X, Zhai H-J, Cui L-F, Wang L-S (2004) Angew Chem Int Ed 43:2125–2129

    Article  CAS  Google Scholar 

  78. Li X, Kiran B, Wang LS (2005) J Phys Chem A 109:4366–4374

    Article  CAS  Google Scholar 

  79. Zhai HJ, Wang LS, Zubarev DY, Boldyrev AI (2006) J Phys Chem A 110:1689–1693

    Article  CAS  Google Scholar 

  80. Kiran B, Li X, Zhai HJ, Wang LS (2006) J Chem Phys 125:133204

    Article  Google Scholar 

  81. Zalesski-Ejgierd P, Pyykkö P (2009) Can J Chem 87:798–801

    Article  Google Scholar 

  82. Macchi P, Sironi A (2003) Coord Chem Rev 238–239:383

    Article  Google Scholar 

  83. Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633

    Article  Google Scholar 

  84. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627

    Article  Google Scholar 

  85. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529

    Article  CAS  Google Scholar 

  86. Schmider HL, Becke AD (2000) J Mol Struct THEOCHEM 527:51–61

    Article  CAS  Google Scholar 

  87. Schmider HL, Becke AD (2002) J Chem Phys 116:3184–3193

    Article  CAS  Google Scholar 

  88. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, 3rd edn, vol. XXVI, 954

  89. Cai Z-L, Reimers JR (2000) J Phys Chem A 104:8389

    Article  CAS  Google Scholar 

  90. Hofbeck T, Yersin H (2010) Inorg Chem 49:9290

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios C. Tsipis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1825 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsipis, A.C., Gkarbounis, D.N. Sequential metalation of benzene: electronic, bonding, magnetotropic and spectroscopic properties of coinage metalated benzenes studied by DFT. J Mol Model 21, 153 (2015). https://doi.org/10.1007/s00894-015-2661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2661-x

Keywords

Navigation