Log in

Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The comparative analysis of growth, intracellular content of Na+ and K+, and the production of trehalose in the halophilic Debaryomyces hansenii and Saccharomyces cerevisiae were determined under saline stress. The yeast species were studied based on their ability to grow in the absence or presence of 0.6 or 1.0 M NaCl and KCl. D. hansenii strains grew better and accumulated more Na+ than S. cerevisiae under saline stress (0.6 and 1.0 M of NaCl), compared to S. cerevisiae strains under similar conditions. By two methods, we found that D. hansenii showed a higher production of trehalose, compared to S. cerevisiae; S. cerevisiae active dry yeast contained more trehalose than a regular commercial strain (S. cerevisiae La Azteca) under all conditions, except when the cells were grown in the presence of 1.0 M NaCl. In our experiments, it was found that D. hansenii accumulates more glycerol than trehalose under saline stress (2.0 and 3.0 M salts). However, under moderate NaCl stress, the cells accumulated more trehalose than glycerol. We suggest that the elevated production of trehalose in D. hansenii plays a role as reserve carbohydrate, as reported for other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler L, Gustafsson L (1980) Polyhydric alcohol production and intracellular amino acid pool in relation to halotolerance of yeast Debaryomyces hansenii. Arch Microbiol 124:123–130

    Google Scholar 

  • Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162:300–306

    CAS  PubMed  Google Scholar 

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    CAS  PubMed  Google Scholar 

  • André L, Nilsson A, Adler L (1988) The role of glycerol in osmotolerance of the yeast Debaryomyces hansenii. J Gen Microbiol 134:669–677

    Google Scholar 

  • Arakawa T, Timasheff SN (1982) Stabilization of protein structure by sugars. Biochemistry 21:6536–6544

    Google Scholar 

  • Araujo PS, Panek AC, Ferreira R, Panek AD (1989) Determination of trehalose in biological samples by a simple and stable trehalase preparation. Anal Biochem 176:432–436

    CAS  PubMed  Google Scholar 

  • Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Google Scholar 

  • Bayley RM, Morton RA (1978) Recent developments in the molecular biology of extremely halophilic bacteria. Crit Rev Microbiol 6:151–205

    CAS  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    CAS  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    CAS  PubMed  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic microorganisms. Adv Microb Physiol 17:181–242

    CAS  PubMed  Google Scholar 

  • Brown AD (1990) Microbial water stress physiology. Principles and perspectives. Wiley, Chichester

    Google Scholar 

  • Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591

    CAS  PubMed  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    CAS  Google Scholar 

  • Elbein AD (1974) The metabolism of α,α-trehalose. Adv Carbohydr Chem Biochem 30:227–256

    CAS  PubMed  Google Scholar 

  • González-Hernández JC, Peña A (2002) Estrategias de adaptación de microorganismos halófilos y Debaryomyces hansenii (Levadura halófila). Rev Latinoam Microbiol 44:137–156

    Google Scholar 

  • González-Hernández JC, Cárdenas-Monroy CA, Peña A (2004) Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii. Yeast 21:403–412

    Article  PubMed  Google Scholar 

  • Gustafsson L, Norkrans B (1976) On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenii. Arch Microbiol 110:177–183

    CAS  PubMed  Google Scholar 

  • Higgins CF, Cairney J, Stirling DA, Sutherland L, Booth IR (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem Sci 12:339–344

    Article  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K (2000) Evidence for contribution of neutral trehalase in barotolerance of Saccharomyces cerevisiae. Appl Environ Microbiol 66:5182–5185

    Article  CAS  PubMed  Google Scholar 

  • João AJ, Polizeli TMML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  PubMed  Google Scholar 

  • Jovall PA, Tublad-Johansson I, Adler L (1990) 13C NMR analysis of production and accumulation of osmoregulatory metabolites in the salt-tolerant yeast Debaryomyces hansenii. Arch Microbiol 154:209–214

    CAS  Google Scholar 

  • Khroustalyova G, Adler L, Rapoport A (2001) Exponential growth phase cells of the osmotolerant yeast Debaryomyces hansenii are extremely resistant to dehydration stress. Process Biochem 36:1163–1166

    Google Scholar 

  • Kienle I, Us Burgert M, Holzer H (1993) Assay of trehalose with acid trehalase purified from Saccharomyces cerevisiae. Yeast 6:607–611

    Google Scholar 

  • Larsson C, Gustafsson L (1987) Glycerol production relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch Microbiol 147:358–363

    Google Scholar 

  • Larsson C, Morales C, Gustafsson L (1990) Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grow in a chemostat at different salinities. J Bacteriol 172:1769–1774

    CAS  PubMed  Google Scholar 

  • LeRudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    CAS  Google Scholar 

  • Meikle AJ, Chudek JA, Reed RH, Gadd GM (1991) Natural abundance 13C-nuclear magnetic resonance spectroscopic analysis of acyclic polyol and trehalose accumulation by several yeast species in response to salt stress. FEMS Microbiol Lett 66:163–167

    Article  CAS  PubMed  Google Scholar 

  • Neves ML, Oliveira RP, Lucas CM (1997) Metabolic flux response to salt-induced stress in the halotolerant yeast Debaryomyces hansenii. Microbiology 143:1133–1139

    CAS  PubMed  Google Scholar 

  • Norkrans B, Kylin A (1969) Regulation of potassium to sodium ratio and the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol 100:836–845

    CAS  PubMed  Google Scholar 

  • Panek AD (1995) Trehalose metabolism-new horizons in technological applications. Braz J Med Biol Res 1995:169–185

    Google Scholar 

  • Peña A, Cinco G, García A, Gómez-Puyou A, Tuena M (1967) Effect of externally added sodium and potassium ions on the glycolytic sequence of Saccharomyces cerevisiae. Biochim Biophys Acta 148:673–682

    Google Scholar 

  • Peña A, Uribe S, Clemente M, Sánchez N (1992) Rehydration temperature is critical for metabolic competence and for membrane integrity in active dry yeast (ADY). Arch Microbiol 158:75–80

    Google Scholar 

  • Prista C, Almagro A, Loureiro-Días MC, Ramos J (1997) Physiological basis for the high tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    CAS  PubMed  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  CAS  PubMed  Google Scholar 

  • Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52

    CAS  PubMed  Google Scholar 

  • Stambuk BU, Crowe JH, Crowe LM, Panek AD, de Araujo PS (1993) A dependable method for the synthesis of [14C]trehalose. Anal Biochem 212:150–153

    Article  CAS  PubMed  Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    CAS  PubMed  Google Scholar 

  • Sue HL, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  PubMed  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    Google Scholar 

  • Thomé-Ortíz PE, Peña A, Ramírez J (1998) Monovalent cation fluxes and physiological changes of Debaryomyces hansenii grown at high concentrations of KCl and NaCl. Yeast 14:1355–1371

    Article  PubMed  Google Scholar 

  • Wieland OH (1965) Glycerol. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Weinheim, pp 598–606

    Google Scholar 

  • Wiemken A (1995) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58:209–217

    Google Scholar 

  • Yagi T (1988) Intracellular levels of glycerol necessary for initiation of growth under salt-stressed conditions in a salt-tolerant yeast, Zygosaccharomyces rouxii. FEMS Microbiol Lett 49:25–30

    Article  CAS  Google Scholar 

  • Yagi T (1991) Effects of increases and decreases in the external salinity on the intracellular glycerol and inorganic ion content in the salt-tolerant yeast. Microbios 68:109–117

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grant no. 223999 (PAPIIT) from DGAPA, Universidad Nacional Autónoma de México, and no. 36070 N from the Consejo Nacional de Ciencia y Tecnología de México (CONACYT). Juan Carlos González-Hernández was a CONACYT fellow (127608). The authors thank José Sampedro for his comments in this work and the technical assistance of Martha Calahorra and Norma S. Sánchez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. González-Hernández.

Additional information

Communicated by W.D. Grant

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Hernández, J.C., Jiménez-Estrada, M. & Peña, A. Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress. Extremophiles 9, 7–16 (2005). https://doi.org/10.1007/s00792-004-0415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0415-2

Keywords

Navigation