Log in

Span-reachability querying in large temporal graphs

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Reachability is a fundamental problem in graph analysis. In applications such as social networks and collaboration networks, edges are always associated with timestamps. Most existing works on reachability queries in temporal graphs assume that two vertices are related if they are connected by a path with non-decreasing timestamps (time-respecting) of edges. This assumption fails to capture the relationship between entities involved in the same group or activity with no time-respecting path connecting them. In this paper, we define a new reachability model, called span-reachability, designed to relax the time order dependency and identify the relationship between entities in a given time period. We adopt the idea of two-hop cover and propose an index-based method to answer span-reachability queries. Several optimizations are also given to improve the efficiency of index construction and query processing. We conduct extensive experiments on eighteen real-world datasets to show the efficiency of our proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://snap.stanford.edu/data/index.html.

  2. http://konect.cc/.

References

  1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub labelings for shortest paths. In: ESA, pages 24–35, (2012)

  2. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in large data and knowledge bases. SIGMOD 18, 253–262 (1989)

    Article  Google Scholar 

  3. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In: SIGMOD, pages 349–360, (2013)

  4. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling. In: Chung, C., Broder, A.Z., Shim, K., Suel, T. (eds.) WWW, pp. 237–248. ACM (2014)

  5. Anyanwu, K., Sheth, A.: \(\rho \)-queries: enabling querying for semantic associations on the semantic web. In: WWW, pages 690–699, (2003)

  6. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying graphs. Synth. Lect. Data Manag. 10(3), 1–184 (2018)

    Article  Google Scholar 

  7. Bramandia, R., Choi, B., Ng, W.K.: On incremental maintenance of 2-hop labeling of graphs. In: WWW, pages 845–854, (2008)

  8. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  9. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries. In: ICDE, pages 893–902, (2008)

  10. Cheng, E., Grossman, J.W., Lipman, M.J.: Time-stamped graphs and their associated influence digraphs. Discrete Appl. Math. 128(2–3), 317–335 (2003)

    Article  MathSciNet  Google Scholar 

  11. Cheng, J., Huang, S., Wu, H., Fu, A.W.-C.: Tf-label: a topological-folding labeling scheme for reachability querying in a large graph. In: SIGMOD, pages 193–204, (2013)

  12. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Operations Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  13. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MathSciNet  Google Scholar 

  14. Ferreira, A.: On models and algorithms for dynamic communication networks: The case for evolving graphs. In: In Proc. ALGOTEL, (2002)

  15. Gao, Y., Zhang, T., Qiu, L., Linghu, Q., Chen, G.: Time-respecting flow graph pattern matching on temporal graphs. IEEE Trans. Knowl. Data Eng. 33, 3453–3467 (2020)

    Article  Google Scholar 

  16. Gurukar, S., Ranu, S., Ravindran, B.: Commit: A scalable approach to mining communication motifs from dynamic networks. In: SIGMOD, pages 475–489, (2015)

  17. Holme, P., Edling, C.R., Liljeros, F.: Structure and time evolution of an internet dating community. Soc. Netw. 26(2), 155–174 (2004)

    Article  Google Scholar 

  18. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  19. **, R., **ang, Y., Ruan, N., Fuhry, D.: 3-hop: a high-compression indexing scheme for reachability query. In: SIGMOD, pages 813–826, (2009)

  20. **, R., **ang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very large directed graphs. In: SIGMOD, pages 595–608, (2008)

  21. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  Google Scholar 

  22. Li, R.-H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pages 797–808 (2018)

  23. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  Google Scholar 

  24. Schenkel, R., Theobald, A., Weikum, G.: Efficient creation and incremental maintenance of the hopi index for complex xml document collections. In: ICDE, pages 360–371, (2005)

  25. Semertzidis, K., Pitoura, E., Lillis, K.: Timereach: Historical reachability queries on evolving graphs. In: EDBT, pages 121–132, (2015)

  26. Sengupta, N., Bagchi, A., Ramanath, M., Bedathur, S.: Arrow: Approximating reachability using random walks over web-scale graphs. In: ICDE, pages 470–481, (2019)

  27. Su, J., Zhu, Q., Wei, H., Yu, J.X.: Reachability querying: can it be even faster? TKDE 29(3), 683–697 (2016)

    Google Scholar 

  28. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609, 245–252 (2016)

    Article  MathSciNet  Google Scholar 

  29. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph reachability queries in constant time. In: ICDE, page 75 (2006)

  30. Wang, S., Lin, W., Yang, Y., **ao, X., Zhou, S.: Efficient route planning on public transportation networks: A labelling approach. In: SIGMOD, pages 967–982, (2015)

  31. Wei, H., Yu, J.X., Lu, C., **, R.: Reachability querying: An independent permutation labeling approach. PVLDB 7(12), 1191–1202 (2014)

    Google Scholar 

  32. Wen, D., Huang, Y., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently answering span-reachability queries in large temporal graphs. In: ICDE, pages 1153–1164. IEEE, (2020)

  33. Wu, H., Huang, Y., Cheng, J., Li, J., Ke, Y.: Reachability and time-based path queries in temporal graphs. In: ICDE, pages 145–156, (2016)

  34. Xuan, B.B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

    Article  MathSciNet  Google Scholar 

  35. Yano, Y., Akiba, T., Iwata, Y., Yoshida, Y.: Fast and scalable reachability queries on graphs by pruned labeling with landmarks and paths. In: CIKM, pages 1601–1606, (2013)

  36. Yıldırım, H., Chaoji, V., Zaki, M.J.: Grail: a scalable index for reachability queries in very large graphs. VLDBJ 21(4), 509–534 (2012)

    Article  Google Scholar 

  37. Yildirim, H., Chaoji, V., Zaki, M.J.: Dagger: A scalable index for reachability queries in large dynamic graphs. ar**v preprint ar**v:1301.0977, (2013)

  38. Yu, J.X., Cheng, J.: Graph reachability queries: a survey. In: Managing and Mining Graph Data, pages 181–215. (2010)

  39. Zhang, T., Gao, Y., Chen, L., Guo, W., Pu, S., Zheng, B., Jensen, C.S.: Efficient distributed reachability querying of massive temporal graphs. VLDBJ, pages 1–26, (2019)

  40. Zhang, T., Gao, Y., Li, C., Ge, C., Guo, W., Zhou, Q.: Distributed reachability queries on massive graphs. DASFAA 11448, 406–410 (2019)

    Google Scholar 

  41. Zhu, A.D., Lin, W., Wang, S., **ao, X.: Reachability queries on large dynamic graphs: a total order approach. In: SIGMOD, pages 1323–1334, (2014)

Download references

Acknowledgements

Ying Zhang is supported by ARC FT170100128 and ARC DP210101393. Lu Qin is supported by ARC FT200100787 and DP210101347. Dawei Cheng is supported by the National Science Foundation of China under grant no 62102287. Wenjie Zhang is supported by ARC DP180103096 and ARC DP200101116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, D., Yang, B., Zhang, Y. et al. Span-reachability querying in large temporal graphs. The VLDB Journal 31, 629–647 (2022). https://doi.org/10.1007/s00778-021-00715-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-021-00715-z

Keywords

Navigation