Log in

A personal account on 25 years of scientific literature on [FeFe]-hydrogenase

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

[FeFe]-hydrogenases are gas-processing metalloenzymes that catalyze H2 oxidation and proton reduction (H2 release) in microorganisms. Their high turnover frequencies and lack of electrical overpotential in the hydrogen conversion reaction has inspired generations of biologists, chemists, and physicists to explore the inner workings of [FeFe]-hydrogenase. Here, we revisit 25 years of scientific literature on [FeFe]-hydrogenase and propose a personal account on ‘must-read’ research papers and review article that will allow interested scientists to follow the recent discussions on catalytic mechanism, O2 sensitivity, and the in vivo synthesis of the active site cofactor with its biologically uncommon ligands carbon monoxide and cyanide. Focused on—but not restricted to—structural biology and molecular biophysics, we highlight future directions that may inspire young investigators to pursue a career in the exciting and competitive field of [FeFe]-hydrogenase research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from the ACS

Fig. 2
Scheme 1.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets analysed during the current study are available from the corresponding authors on request.

References

  1. Greening C, Grinter R (2022) Microbial oxidation of atmospheric trace gases. Nat Rev Microbiol 20:513–528

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz E, Friedrich B (2006) The H2-metabolizing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, ed. 3. Springer, New York, pp. 496–563. https://springer.longhoe.net/referenceworkentry/10.1007%2F0-387-30742-7_17),

  3. Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, Cook GM, Morales SE (2016) Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J 10:761–777

    Article  CAS  PubMed  Google Scholar 

  4. Benoit SL, Maier RJ, Sawers RG, Greening C (2020) Molecular hydrogen metabolism: a widespread trait of pathogenic bacteria and protists. Microbiol Mol Biol Rev 84:e00092-e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  6. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66:1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melis A, Happe T (2004) Trails of green alga hydrogen research—from hans gaffron to new frontiers. Photosynth Res 80:401–409

    Article  CAS  PubMed  Google Scholar 

  8. Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  9. Lubitz W, Ogata H, Rüdiger O, Reijerse E, Rudiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  10. Søndergaard D, Pedersen CNS, Greening C (2016) HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6:34212

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shima S, Pilak O, Vogt S, Schick M, Stagni MS, Meyer-Klaucke W, Warkentin E, Thauer RK, Ermler U (2008) The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science (80–). 321:572–575

    Article  CAS  Google Scholar 

  12. Thauer RK, Kaster A-K, Goenrich M, Schick M, Hiromoto T, Shima S (2010) Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem 79:507–536

    Article  CAS  PubMed  Google Scholar 

  13. Huang G, Wagner T, Ermler U, Shima S (2020) Methanogenesis involves direct hydride transfer from H2 to an organic substrate. Nat Rev Chem 4:213–221

    Article  CAS  Google Scholar 

  14. Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74:529–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fritsch J, Lenz O, Friedrich B (2013) Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat Rev 11:106–114

    CAS  Google Scholar 

  16. Parkin A, Sargent F (2012) The hows and whys of aerobic H2 metabolism. Curr Opin Chem Biol 16:26–34

    Article  CAS  PubMed  Google Scholar 

  17. Shafaat HS, Rüdiger O, Ogata H, Lubitz W (2013) [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions. Biochim Biophys Acta 1827:986–1002

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong FA, Fontecilla-Camps JC (2008) A natural choice for activating hydrogen. Science (80–). 321:498–499

    Article  Google Scholar 

  19. Schuchmann K, Chowdhury NP, Müller V (2018) Complex multimeric [FeFe] hydrogenases: biochemistry, physiology and new opportunities for the hydrogen economy. Front Microbiol 9:2911

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goldet G, Brandmayr C, Stripp ST, Happe T, Cavazza C, Fontecilla-Camps JC, Armstrong FA (2009) Electrochemical kinetic investigations of the reactions of [FeFe]-hydrogenases with carbon monoxide and oxygen: comparing the importance of gas tunnels and active-site electronic/redox effects. J Am Chem Soc 131:14979–14989

    Article  CAS  PubMed  Google Scholar 

  21. del Barrio M, Sensi M, Fradale L, Bruschi M, Greco C, de Gioia L, Bertini L, Fourmond V, Léger C (2018) Interaction of the H-cluster of FeFe hydrogenase with halides. J Am Chem Soc 140:5485–5492

    Article  PubMed  Google Scholar 

  22. Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong FA, Evans RM, Hexter SV, Murphy BJ, Roessler MM, Wul P (2016) Guiding principles of hydrogenase catalysis instigated and clarified by protein film electrochemistry. Acc Chem Res 49:884–892

    Article  CAS  PubMed  Google Scholar 

  24. Fourmond V, Plumeré N, Léger C (2021) Reversible catalysis. Nat Rev Chem 5:348–360

    Article  CAS  PubMed  Google Scholar 

  25. Haumann M, Stripp ST (2018) The molecular proceedings of biological hydrogen turnover. Acc Chem Res 51:1755–1763

    Article  CAS  PubMed  Google Scholar 

  26. Kleinhaus JT, Wittkamp F, Yadav S, Siegmund D, Apfel U-P (2021) [FeFe]-Hydrogenases: maturation and reactivity of enzymatic systems and overview of biomimetic models. Chem Soc Rev 50:1668–1784

    Article  CAS  PubMed  Google Scholar 

  27. Birrell JA, Rodríguez-Maciá P, Reijerse EJ, Martini MA, Lubitz W (2021) The catalytic cycle of [FeFe] hydrogenase: a tale of two sites. Coord Chem Rev 449:214191

    Article  CAS  Google Scholar 

  28. Land H, Senger M, Berggren G, Stripp ST (2020) Current state of [FeFe]-hydrogenase research—biodiversity and spectroscopic investigations. ACS Catal 10:7069–7086

    Article  CAS  Google Scholar 

  29. Britt RD, Tao L, Rao G, Chen N, Wang L-P (2022) Proposed mechanism for the biosynthesis of the [FeFe] hydrogenase H-cluster: central roles for the radical SAM enzymes HydG and HydE. ACS Bio Med Chem Au 2:11–21

    Article  CAS  PubMed  Google Scholar 

  30. Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW (2022) Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase. Chem Rev 122:11900–11973

    Article  CAS  PubMed  Google Scholar 

  31. Winkler M, Hemschemeier A, Jacobs J, Stripp ST, Happe T (2010) Multiple ferredoxin isoforms in Chlamydomonas reinhardtii - their role under stress conditions and biotechnological implications. Eur J Cell Biol 89:998–1004

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Maciá P, Breuer N, DeBeer S, Birrell JA (2020) Insight into the redox behavior of the [4Fe–4S] subcluster in [FeFe] hydrogenases. ACS Catal 10:13084–13095

    Article  Google Scholar 

  33. Artz JH, Zadvornyy OA, Mulder DW, Keable SM, Cohen AE, Ratzloff MW, Williams SG, Ginovska B, Kumar N, Song J, McPhillips SE, Davidson CM, Lyubimov AY, Pence N, Schut GJ, Jones AK, Soltis SM, Adams MWW, Raugei S, King PW, Peters JW (2020) Tuning catalytic bias of hydrogen gas producing hydrogenases. J Am Chem Soc 142:1227–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Senger M, Mebs S, Duan J, Shulenina O, Laun K, Kertess L, Wittkamp F, Apfel U-P, Happe T, Winkler M, Haumann M, Stripp ST (2018) Protonation/reduction dynamics at the [4Fe–4S] cluster of the hydrogen-forming cofactor in [FeFe]-hydrogenases. Phys Chem Chem Phys 20:3128–3140

    Article  CAS  PubMed  Google Scholar 

  35. Tai H, Hirota S, Stripp ST (2021) Proton transfer mechanisms in bimetallic hydrogenases. Acc Chem Res 54:232–241

    Article  CAS  PubMed  Google Scholar 

  36. Duan J, Mebs S, Laun K, Wittkamp F, Heberle J, Happe T, Hofmann E, Apfel U-P, Winkler M, Senger M, Haumann M, Stripp ST (2019) Geometry of the catalytic active site in [FeFe]-hydrogenase is determined by hydrogen bonding and proton transfer. ACS Catal 9:9140–9149

    Article  CAS  Google Scholar 

  37. Lampret O, Adamska-Venkatesh A, Konegger H, Wittkamp F, Apfel U-P, Reijerse EJ, Lubitz W, Rüdiger O, Happe T, Winkler M (2017) Interplay between CN – ligands and the secondary coordination sphere of the H-cluster in [FeFe]-hydrogenases. J Am Chem Soc 139:18222–18230

    Article  CAS  PubMed  Google Scholar 

  38. Adams MW (1990) The structure and mechanism of iron-hydrogenases. Biochim Biophys Acta 1020:115–145

    Article  CAS  PubMed  Google Scholar 

  39. Stephenson M, Stickland LH (1931) Hydrogenase: a bacterial enzyme activating molecular hydrogen: the properties of the enzyme. Biochem J 25:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Farkas A, Farkas L, Yudkin J (1934) The decomposition of sodium formate by bacterium coli in the presence of heavy water. Proc R Soc Lond Ser B Contain. Pap A Biol Character 115:373–379

    CAS  Google Scholar 

  41. Gest H (1954) Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev 18:43–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peck HD, Pietro AS, Gest H (1956) On the mechanism of hydrogenase in action. Proc Natl Acad Sci 42:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sadana JC, Rittenberg D (1963) Some observations on the enzyme hydrogenase of Desulfovibrio desulfuricans. Proc Natl Acad Sci 50:900–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakos G, Mortenson L (1971) Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5. Biochim Biophys Acta 227:576–583

    Article  CAS  PubMed  Google Scholar 

  45. Mortenson LE, Nakos G (1971) Structural properties of hydrogenase from Clostridium pasteurianum W5. Biochemistry 10:2442–2449

    Article  CAS  PubMed  Google Scholar 

  46. Adams MWW, Mortenson LE, Chen J-S (1980) Hydrogenase. Biochim Biophys Acta Rev Bioenerg 594:105–176

    Article  CAS  Google Scholar 

  47. Cammack R, Maharajh WVL, Schneider K (1982) EPR studies of some oxygen-stable hydrogenases. In: Ho C, Eaton WA, Collman JP, Gibson QH, Leigh JS, Margoliash E, Moffat K, Scheidt WR (eds) Electron transport and oxygen utilization,. Macmillan Education London, pp. 411–415. https://doi.org/10.1007/978-1-349-06491-5)

  48. Yamazaki S (1982) A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J Biol Chem 257:7926–7929

    Article  CAS  PubMed  Google Scholar 

  49. Graf E-G, Thauer RK (1981) Hydrogenase from methanobacterium thermoautotrophicum, a nickel-containing enzyme. FEBS Lett 136:165–169

    Article  CAS  Google Scholar 

  50. Zirngibl C, Dongen W, Schworer B, Bunau R, Richter M, Klein A, Thauer RK (1992) H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. Eur J Biochem 208:511–520

    Article  CAS  PubMed  Google Scholar 

  51. Volbeda A, Charon M, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel–iron hydrogenase from Desulfovibrio desulfuricans. Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  52. Happe RP, Roseboom W, Pierik AJ, Albracht SPJ, Bagley KA (1997) Biological activition of hydrogen. Nature 385:126–126

    Article  CAS  PubMed  Google Scholar 

  53. van der Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SPJ, Spek TM, Arendsen AF, Happe RP, Yun S, Bagley KA, Stufkens DJ, Hagen WR, Albracht SPJ, Hagen WR (1996) Similarities in the architecture of the active sites of Ni-hydrogenases and Fe-hydrogenases detected by means of infrared spectroscopy. Eur J Biochem 237:629–634

    Article  PubMed  Google Scholar 

  54. Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray Crystal Structure of the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom Resolution. Science 282:1853–1858

    Article  CAS  PubMed  Google Scholar 

  55. Duan J, Senger M, Esselborn J, Engelbrecht V, Wittkamp F, Apfel U-P, Hofmann E, Stripp ST, Happe T, Winkler M (2018) Crystallographic and spectroscopic assignment of the proton transfer pathway in [FeFe]-hydrogenases. Nat Commun 9:4726

    Article  PubMed  PubMed Central  Google Scholar 

  56. Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel U-P, Happe T, Winkler M, Heberle J, Stripp ST (2019) How [FeFe]-hydrogenase facilitates bidirectional proton transfer. J Am Chem Soc 141:17394–17403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lampret O, Duan J, Hofmann E, Winkler M, Armstrong FA, Happe T (2020) The roles of long-range proton-coupled electron transfer in the directionality and efficiency of [FeFe]-hydrogenases. Proc Natl Acad Sci 117:20520–20529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23

    Article  CAS  PubMed  Google Scholar 

  59. Lemon BJ, Peters JW (2000) Photochemistry at the active site of the carbon monoxide inhibited form of the iron-only hydrogenase (CpI). J Am Chem Soc 122:3793–3794

    Article  CAS  Google Scholar 

  60. Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in fe coordination upon reduction of the active site of the Fe-Only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601

    Article  CAS  PubMed  Google Scholar 

  61. Stripp ST, Happe T (2009) How algae produce hydrogen - news from the photosynthetic hydrogenase. Dalt Trans 45:9960–9969

    Article  Google Scholar 

  62. Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  CAS  PubMed  Google Scholar 

  63. von Abendroth G, Stripp ST, Silakov A, Croux C, Soucaille P, Girbal L, Happe T (2008) Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. Int J Hydrogen Energy 33:6076–6081

    Article  Google Scholar 

  64. Sybirna K, Antoine T, Lindberg P, Fourmond V, Rousset M, Méjean V, Bottin H (2008) Shewanella oneidensis: a new and efficient System for expression and maturation of heterologous [Fe-Fe] Hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol 8:73

    Article  PubMed  PubMed Central  Google Scholar 

  65. Posewitz MC, King PW, Smolinski SL, Zhang L, Seibert M, Ghirardi ML (2004) Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720

    Article  CAS  PubMed  Google Scholar 

  66. King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188:2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465:248–251

    Article  CAS  PubMed  Google Scholar 

  68. Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  CAS  PubMed  Google Scholar 

  69. Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, Mouesca J-M, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T (2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat Chem Biol 9:607–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Birrell JA, Wrede K, Pawlak K, Rodriguez-Maciá P, Rüdiger O, Reijerse EJ, Lubitz W (2016) Artificial maturation of the highly active heterodimeric [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Isr J Chem 56:852–863

    Article  CAS  Google Scholar 

  72. Adamska-Venkatesh A, Simmons TR, Siebel JF, Artero V, Fontecave M, Reijerse E, Lubitz W (2015) Artificially maturated [FeFe] hydrogenase from Chlamydomonas reinhardtii: a HYSCORE and ENDOR study of a non-natural H-cluster. Phys Chem Chem Phys 17:5421–5430

    Article  CAS  PubMed  Google Scholar 

  73. Adamska-Venkatesh A, Roy S, Siebel JF, Simmons TR, Fontecave M, Artero V, Reijerse E, Lubitz W (2015) Spectroscopic characterization of the bridging amine in the active site of [FeFe] hydrogenase using isotopologues of the H-Cluster. J Am Chem Soc 137:12744–12747

    Article  CAS  PubMed  Google Scholar 

  74. Gilbert-Wilson R, Siebel JF, Adamska-Venkatesh A, Pham CC, Reijerse E, Wang H, Cramer SP, Lubitz W, Rauchfuss TB (2015) Spectroscopic investigations of [FeFe] hydrogenase maturated with [57Fe2(adt)(CN)2(CO)4]2-. J Am Chem Soc 137:8998–9005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Siebel JF, Adamska-Venkatesh A, Weber K, Rumpel S, Reijerse E, Lubitz W (2015) Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. Biochemistry 54:1474–1483

    Article  CAS  PubMed  Google Scholar 

  76. Sommer C, Richers CP, Lubitz W, Rauchfuss TB, Reijerse EJ (2018) A [RuRu] analogue of an [FeFe]-hydrogenase traps the key hydride intermediate of the catalytic cycle. Angew Chemie Int Ed 57:5429–5432

    Article  CAS  Google Scholar 

  77. Sommer C, Rumpel S, Roy S, Farès C, Artero V, Fontecave M, Reijerse E, Lubitz W (2018) Spectroscopic investigations of a semi-synthetic [FeFe] hydrogenase with propane di-selenol as bridging ligand in the binuclear subsite: comparison to the wild type and propane di-thiol variants. JBIC J Biol Inorg Chem 23:481–491

    Article  CAS  PubMed  Google Scholar 

  78. Noth J, Esselborn J, Güldenhaupt J, Brünje A, Sawyer A, Apfel U-P, Gerwert K, Hofmann E, Winkler M, Happe T (2016) [FeFe]-hydrogenase with chalcogenide substitutions at the H-cluster maintains Full H2 evolution activity. Angew Chemie Int Ed 55:8396–8400

    Article  CAS  Google Scholar 

  79. Kertess L, Wittkamp F, Sommer C, Esselborn J, Rüdiger O, Reijerse EJ, Hofmann E, Lubitz W, Winkler M, Happe T, Apfel U-P (2017) Chalcogenide substitution in the [2Fe] cluster of [FeFe]-hydrogenases conserves high enzymatic activity. Dalt Trans 46:16947–16958

    Article  CAS  Google Scholar 

  80. Esselborn J, Muraki N, Klein K, Engelbrecht V, Metzler-Nolte N, Apfel U-P, Hofmann E, Kurisu G, Happe T (2016) A structural view of synthetic cofactor integration into [FeFe]-hydrogenases. Chem Sci 7:959–968

    Article  CAS  PubMed  Google Scholar 

  81. Fritsch J, Scheerer P, Frielingsdorf S, Kroschinsky S, Friedrich B, Lenz O, Spahn CMT (2011) The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature 479:249–252

    Article  CAS  PubMed  Google Scholar 

  82. Frielingsdorf S, Fritsch J, Schmidt A, Hammer M, Löwenstein J, Siebert E, Pelmenschikov V, Jaenicke T, Kalms J, Rippers Y, Lendzian F, Zebger I, Teutloff C, Kaupp M, Bittl R, Hildebrandt P, Friedrich B, Lenz O, Scheerer P (2014) Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase. Nat Chem Biol 10:378–385

    Article  CAS  PubMed  Google Scholar 

  83. Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci USA 106:17331–17336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW (2015) [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J Am Chem Soc 137:1809–1816

    Article  CAS  PubMed  Google Scholar 

  85. Esselborn J, Kertess L, Apfel U-P, Hofmann E, Happe T (2019) Loss of Specific active-site iron atoms in oxygen-exposed [FeFe]-hydrogenase determined by detailed X-ray structure analyses. J Am Chem Soc 141:17721–17728

    Article  CAS  PubMed  Google Scholar 

  86. Mebs S, Kositzki R, Duan J, Kertess L, Senger M, Wittkamp F, Apfel U-P, Happe T, Stripp ST, Winkler M, Haumann M (2017) Hydrogen and oxygen trap** at the H-cluster of [FeFe]-hydrogenase revealed by site-selective spectroscopy and QM/MM calculations. BBA Bioenerg 1859:28–41

    Article  Google Scholar 

  87. Winkler M, Duan J, Rutz A, Felbek C, Scholtysek L, Lampret O, Jaenecke J, Apfel U-P, Gilardi G, Valetti F, Fourmond V, Hofmann E, Léger C, Happe T (2021) A safety cap protects hydrogenase from oxygen attack. Nat Commun 12:756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Corrigan PS, Tirsch JL, Silakov A (2020) Investigation of the unusual ability of the [FeFe] hydrogenase from clostridium beijerinckii to access an O2-protected state. J Am Chem Soc 142:12409–12419

    Article  CAS  PubMed  Google Scholar 

  89. Rodríguez-Maciá P, Reijerse EJ, Van Gastel M, Debeer S, Lubitz W, Rüdiger O, Birrell JA (2018) Sulfide protects [FeFe] hydrogenases from O2. J Am Chem Soc 140:9346–9350

    Article  PubMed  Google Scholar 

  90. Felbek C, Arrigoni F, de Sancho D, Jacq-Bailly A, Best RB, Fourmond V, Bertini L, Léger C (2021) Mechanism of hydrogen sulfide-dependent inhibition of FeFe hydrogenase. ACS Catal 11:15162–15176

    Article  CAS  Google Scholar 

  91. Rodríguez-Maciá P, Galle LM, Bjornsson R, Lorent C, Zebger I, Yoda Y, Cramer SP, DeBeer S, Span I, Birrell JA (2020) Caught in the hinact: crystal structure and spectroscopy reveal a sulfur bound to the active site of an O2-stable state of [FeFe] hydrogenase. Angew Chemie Int Ed 59:16786–16794

    Article  Google Scholar 

  92. Sidabras JW, Duan J, Winkler M, Happe T, Hussein R, Zouni A, Suter D, Schnegg A, Lubitz W, Reijerse EJ (2019) Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix. Sci Adv eaay5:1394

    Article  Google Scholar 

  93. Morra S, Duan J, Winkler M, Ash PA, Happe T, Vincent KA (2021) Electrochemical control of [FeFe]-hydrogenase single crystals reveals complex redox populations at the catalytic site. Dalt Trans 50:12655–12663

    Article  CAS  Google Scholar 

  94. Stripp ST, Mebs S, Haumann M (2020) Temperature dependence of structural dynamics at the catalytic cofactor of [FeFe]-hydrogenase. Inorg Chem 59:16474–16488

    Article  CAS  PubMed  Google Scholar 

  95. Furlan C, Chongdar N, Gupta P, Lubitz W, Ogata H, Blaza JN, Birrell JA (2022) Structural insight on the mechanism of an electron-bifurcating [FeFe] hydrogenase. Elife 11:e79361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Katsyv A, Kumar A, Saura P, Pöverlein MC, Freibert SA, Stripp ST, Jain S, Gamiz-Hernandez AP, Kaila VRI, Müller V, Schuller JM (2023) Molecular basis of the electron bifurcation mechanism in the [FeFe]-hydrogenase complex HydABC. J Am Chem Soc. https://doi.org/10.1021/jacs.2c11683

  97. Hiromoto T, Nishikawa K, Inoue S, Matsuura H, Hirano Y, Kurihara K, Kusaka K, Cuneo M, Coates L, Tamada T, Higuchi Y (2020) Towards cryogenic neutron crystallography on the reduced form of [NiFe]-hydrogenase. Acta Crystallogr Sect D Struct Biol 76:946–953

    Article  CAS  Google Scholar 

  98. Eisermann J, Seif-Eddine M, Roessler MM (2021) Insights into metalloproteins and metallodrugs from electron paramagnetic resonance spectroscopy. Curr Opin Chem Biol 61:114–122

    Article  CAS  PubMed  Google Scholar 

  99. Hagen WR (2018) EPR spectroscopy of complex biological iron–sulfur systems. J Biol Inorg Chem 23:623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lubitz W, Reijerse E, van Gastel M (2007) [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Chem Rev 107:4331–4365

    Article  CAS  PubMed  Google Scholar 

  101. Patil DS, Moura JJ, He SH, Teixeira M, Prickril BC, DerVartanian DV, Peck HD, LeGall J, Huynh BH (1988) EPR-detectable redox centers of the periplasmic hydrogenase from Desulfovibrio vulgaris. J Biol Chem 263:18732–18738

    Article  CAS  PubMed  Google Scholar 

  102. Pierik AJ, Hagen WR, Redeker JS, Wolbert RBG, Boersma M, Verhagen MFJM, Grande HJ, Veeger C, Mutsaers PHA, Sands RH, Dunham WR (1992) Redox properties of the iron-sulfur clusters in activated Fe-hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 209:63–72

    Article  CAS  PubMed  Google Scholar 

  103. Bennett B, Lemon BJ, Peters JW (2000) Reversible carbon monoxide binding and inhibition at the active site of the Fe-only hydrogenase. Biochemistry 39:7455–7460

    Article  CAS  PubMed  Google Scholar 

  104. Artz JH, Mulder DW, Ratzloff MW, Lubner CE, Zadvornyy OA, LeVan AX, Williams SG, Adams MWW, Jones AK, King PW, Peters JW (2017) Reduction potentials of [FeFe]-hydrogenase accessory iron-sulfur clusters provide insights into the energetics of proton reduction catalysis. J Am Chem Soc 139:9544–9550

    Article  CAS  PubMed  Google Scholar 

  105. Rodríguez-Maciá P, Pawlak K, Rüdiger O, Reijerse EJ, Lubitz W, Birrell JA (2017) Intercluster redox coupling influences protonation at the H-cluster in [FeFe] hydrogenases. J Am Chem Soc 139:15122–15134

    Article  PubMed  Google Scholar 

  106. Albracht SPJ, Roseboom W, Hatchikian EC (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. I. Light sensitivity and magnetic hyperfine interactions as observed by electron paramagnetic resonance. J Biol Inorg Chem 11:88–101

    Article  CAS  PubMed  Google Scholar 

  107. Roseboom W, De Lacey AL, Fernandez VM, Hatchikian EC, Albracht SPJ (2006) The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. J Biol Inorg Chem 11:102–118

    Article  CAS  PubMed  Google Scholar 

  108. Silakov A, Reijerse EJ, Lubitz W (2011) Unraveling the electronic properties of the photoinduced states of the H-cluster in the [FeFe] hydrogenase from D. desulfuricans. Eur J Inorg Chem 2011:1056–1066

    Article  Google Scholar 

  109. Rusnak FM, Adams MWW, Mortenson LE, Münck E (1987) Mössbauer study of Clostridium pasteurianum hydrogenase II. Evidence for a novel three-iron cluster. J Biol Chem 262:38–41

    Article  CAS  PubMed  Google Scholar 

  110. Popescu C, Münck E (1999) Electronic structure of the H cluster in [FeFe]-hydrogenases. J Am Chem Soc 121:15054–15061

    Article  Google Scholar 

  111. Pereira ASS, Tavares P, Moura I, Moura JJGJ, Huynh BHH (2001) Mössbauer characterization of the iron-sulfur clusters in desulfovibrio v ulgaris hydrogenase. J Am Chem Soc 123:2771–2782

    Article  CAS  PubMed  Google Scholar 

  112. Duan J, Hemschemeier A, Burr DJ, Stripp ST, Hofmann E, Happe T (2023) Cyanide binding to [FeFe]-hydrogenase stabilizes the alternative configuration of the proton transfer pathway. Angew Chemie Int Ed. https://doi.org/10.1002/anie.202216903

    Article  Google Scholar 

  113. Martini MA, Bikbaev K, Pang Y, Lorent C, Wiemann C, Breuer N, Zebger I, DeBeer S, Span I, Bjornsson R, Birrell JA, Rodríguez-Maciá P (2023) Binding of exogenous cyanide reveals new active-site states in [FeFe] hydrogenases. Chem Sci. https://doi.org/10.1039/D2SC06098A

    Article  Google Scholar 

  114. Mulder DW, Ratzloff MW, Shepard EM, Byer AS, Noone SM, Peters JW, Broderick JB, King PW (2013) EPR and FTIR analysis of the mechanism of H2 activation by [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 135:6921–6929

    Article  CAS  PubMed  Google Scholar 

  115. Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW (2014) Investigations on the role of proton-coupled electron transfer in hydrogen activation by [FeFe]-hydrogenase. J Am Chem Soc 136:15394–15402

    Article  CAS  PubMed  Google Scholar 

  116. Mulder DW, Guo Y, Ratzloff MW, King PW (2017) Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase. J Am Chem Soc 139:83–86

    Article  CAS  PubMed  Google Scholar 

  117. Lorent C, Katz S, Duan J, Kulka CJ, Caserta G, Teutloff C, Yadav S, Apfel U-P, Winkler M, Happe T, Horch M, Zebger I (2020) Shedding light on proton and electron dynamics in [FeFe] hydrogenases. J Am Chem Soc 142:5493–5497

    Article  CAS  PubMed  Google Scholar 

  118. Sevdalina L, Thorsten M, Klaus Z, Ulrich B, Bernd L, Thomas P (2010) Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 43:181–189

    Article  Google Scholar 

  119. Adamska-Venkatesh A, Krawietz D, Siebel JF, Weber K, Happe T, Reijerse E, Lubitz W (2014) New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster. J Am Chem Soc 136:11339–11346

    Article  CAS  PubMed  Google Scholar 

  120. Silakov A, Reijerse EJ, Albracht SPJ, Hatchikian EC, Lubitz W (2007) The electronic structure of the H-cluster in the [FeFe]-hydrogenase from Desulfovibrio desulfuricans: a Q-band 57Fe-ENDOR and HYSCORE study. J Am Chem Soc 129:11447–11458

    Article  CAS  PubMed  Google Scholar 

  121. Rao G, Britt RD (2018) Electronic structure of two catalytic states of the [FeFe] hydrogenase H-cluster as probed by pulse electron paramagnetic resonance spectroscopy. Inorg Chem 57:10935–10944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Myers WK, Stich TA, Suess DLM, Kuchenreuther JM, Swartz JR, Britt RD (2014) The cyanide ligands of [FeFe] hydrogenase: pulse EPR studies of 13C and 15N-labeled H-cluster. J Am Chem Soc 136:12237–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fiedler AT, Brunold TC (2005) Computational studies of the H-cluster of Fe-only hydrogenases: geometric, electronic, and magnetic properties and their dependence on the [Fe4S4] cubane. Inorg Chem 44:9322–9334

    Article  CAS  PubMed  Google Scholar 

  124. Silakov A, Wenk B, Reijerse E, Albracht SPJ, Lubitz W (2009) Spin distribution of the H-cluster in the Hox-CO state of the [FeFe] hydrogenase from Desulfovibrio desulfuricans: HYSCORE and ENDOR study of 14N and 13C nuclear interactions. JBIC J Biol Inorg Chem 14:301–313

    Article  CAS  PubMed  Google Scholar 

  125. Greco C, Silakov A, Bruschi M, Ryde U, De Gioia L, Lubitz W (2011) Magnetic properties of [FeFe]-hydrogenases: a theoretical investigation based on extended QM and QM/MM models of the h-cluster and its surroundings. Eur J Inorg Chem 2011:1043–1049

    Article  Google Scholar 

  126. Reijerse EJ, Pelmenschikov V, Birrell JA, Richers CP, Kaupp M, Rauchfuss TB, Cramer SP, Lubitz W (2019) Asymmetry in the ligand coordination sphere of the [FeFe] hydrogenase active site is reflected in the magnetic spin interactions of the Aza-propanedithiolate Ligand. J Phys Chem Lett 10:6794–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Reijerse E, Birrell JA, Lubitz W (2020) Spin polarization reveals the coordination geometry of the [FeFe] hydrogenase active site in Its CO-inhibited state. J Phys Chem Lett 11:4597–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Németh B, Senger M, Redman HJ, Ceccaldi P, Broderick J, Magnuson A, Stripp ST, Haumann M, Berggren G (2020) [FeFe]-hydrogenase maturation: H-cluster assembly intermediates tracked by electron paramagnetic resonance, infrared, and X-ray absorption spectroscopy. J Biol Inorg Chem 25:777–788

    Article  PubMed  PubMed Central  Google Scholar 

  129. Laun K, Mebs S, Duan J, Wittkamp F, Apfel U-P, Happe T, Winkler M, Haumann M, Stripp ST (2018) Spectroscopical investigations on the redox chemistry of [FeFe]-hydrogenases in the presence of carbon monoxide. Molecules 23:1669

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rao G, Tao L, Suess DLM, Britt RD (2018) A [4Fe-4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly. Nat Chem 10:555–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Britt RD, Rao G, Tao L (2020) Biosynthesis of the catalytic H-cluster of [FeFe] hydrogenase: the roles of the Fe–S maturase proteins HydE, HydF, and HydG. Chem Sci 11:10313–10323

    Article  PubMed  PubMed Central  Google Scholar 

  132. Suess DLM, Britt RD (2015) EPR spectroscopic studies of [FeFe]-hydrogenase maturation. Top Catal 58:699–707

    Article  CAS  Google Scholar 

  133. Rao G, Pattenaude SA, Alwan K, Blackburn NJ, Britt RD, Rauchfuss TB (2019) The binuclear cluster of [FeFe] hydrogenase is formed with sulfur donated by cysteine of an [Fe(Cys)(CO)2(CN)] organometallic precursor. Proc Natl Acad Sci USA 116:20850–20855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rao G, Chen N, Marchiori DA, Wang L-P, Britt RD (2022) Accumulation and pulse electron paramagnetic resonance spectroscopic investigation of the 4-oxidobenzyl radical generated in the radical S -adenosyl- l -methionine Enzyme HydG. Biochemistry 61:107–116

    Article  CAS  PubMed  Google Scholar 

  135. Tao L, Pattenaude SA, Joshi S, Begley TP, Rauchfuss TB, Britt RD (2020) Radical SAM enzyme HydE generates adenosylated Fe(I) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster. J Am Chem Soc 142:10841–10848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Tao L, Woods TJ, Britt RD, Rauchfuss TB (2022) Organometallic Fe2(μ-SH)2(CO)4(CN)2 cluster allows the biosynthesis of the [FeFe]-hydrogenase with only the hydf maturase. J Am Chem Soc 144:1534–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pagnier A, Balci B, Shepard EM, Broderick WE, Broderick JB (2022) [FeFe]-Hydrogenase in vitro maturation. Angew Chemie Int Ed. https://doi.org/10.1002/anie.202212074

    Article  Google Scholar 

  138. Heghmanns M, Rutz A, Kutin Y, Engelbrecht V, Winkler M, Happe T, Kasanmascheff M (2022) The oxygen-resistant [FeFe]-hydrogenase CbA5H harbors an unknown radical signal. Chem Sci. https://doi.org/10.1039/D2SC00385F

    Article  PubMed  PubMed Central  Google Scholar 

  139. Colovic MB, Vasic VM, Djuric DM, Krstic DZ (2018) Sulphur-containing amino acids: protective role against free radicals and heavy metals. Curr Med Chem 25:324–335

    Article  CAS  PubMed  Google Scholar 

  140. Lampret O, Esselborn J, Haas R, Rutz A, Booth RL, Kertess L, Wittkamp F, Megarity CF, Armstrong FA, Winkler M, Happe T (2019) The final steps of [FeFe]-hydrogenase maturation. Proc Natl Acad Sci 116:15802–15810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Motion CL, Lovett JE, Bell S, Cassidy SL, Cruickshank PAS, Bolton DR, Hunter RI, El Mkami H, Van Doorslaer S, Smith GM (2016) DEER sensitivity between iron centers and nitroxides in heme-containing proteins improves dramatically using broadband. High-Field EPR J Phys Chem Lett 7:1411–1415

    Article  CAS  PubMed  Google Scholar 

  142. Neese F (2017) Quantum chemistry and EPR parameters, vol. 6. In: eMagRes. Wiley, Chichester, pp. 1–22. https://doi.org/10.1002/9780470034590.emrstm1505)

  143. Tran VA, Neese F (2020) Double-hybrid density functional theory for g-tensor calculations using gauge including atomic orbitals. J Chem Phys 153:054105

    Article  CAS  PubMed  Google Scholar 

  144. Su X-D, Zhang H, Terwilliger TC, Liljas A, **ao J, Dong Y (2015) Protein crystallography from the perspective of technology developments. Crystallogr Rev 21:122–153

    Article  PubMed  PubMed Central  Google Scholar 

  145. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767:1073–1101

    Article  CAS  Google Scholar 

  146. Todorovic S, Teixeira M (2018) Resonance Raman spectroscopy of Fe–S proteins and their redox properties. J Biol Inorg Chem 23:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guo Y, Wang H, **ao Y, Vogt S, Thauer RK, Shima S, Volkers PI, Rauchfuss TB, Pelmenschikov V, Case DA, Alp EE, Sturhahn W, Yoda Y, Cramer SP (2008) Characterization of the Fe site in iron−sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg Chem 47:3969–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ogata H, Krämer T, Wang H, Schilter D, Pelmenschikov V, van Gastel M, Neese F, Rauchfuss TB, Gee LB, Scott AD, Yoda Y, Tanaka Y, Lubitz W, Cramer SP (2015) Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat Commun 6:7890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Reijerse EJ, Pham CC, Pelmenschikov V, Gilbert-Wilson R, Adamska-Venkatesh A, Siebel JF, Gee LB, Yoda Y, Tamasaku K, Lubitz W, Rauchfuss TB, Cramer SP (2017) Direct observation of an iron-bound terminal hydride in [FeFe]-hydrogenase by nuclear resonance vibrational spectroscopy. J Am Chem Soc 139:4306–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Stripp ST (2021) In situ infrared spectroscopy for the analysis of gas-processing metalloenzymes. ACS Catal 11:7845–7862

    Article  CAS  Google Scholar 

  151. Pierik AJ, Hulstein M, Hagen WR, Albracht SPJ (1998) A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur J Biochem 258:572–578

    Article  CAS  PubMed  Google Scholar 

  152. De Lacey AL, Stadler C, Cavazza C, Hatchikian EC, Fernandez VM (2000) FTIR characterization of the active site of the Fe-hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 122:11232–11233

    Article  Google Scholar 

  153. Chen Z, Lemon BJ, Huang S, Swartz DJ, Peters JW, Bagley KA (2002) Infrared studies of the CO-inhibited form of the Fe-Only Hydrogenase from Clostridium pasteurianum I: examination of Its light sensitivity at cryogenic temperatures. Biochemistry 41:2036–2043

    Article  CAS  PubMed  Google Scholar 

  154. Kamp C, Silakov A, Winkler M, Reijerse EJ, Lubitz W, Happe T (2008) Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. Biochim Biophys Acta 1777:410–416

    Article  CAS  PubMed  Google Scholar 

  155. Ezzaher S, Capon J-F, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J, Pichon R, Kervarec N, Pe Y, Schollhammer P, Talarmin J, Pichon R, Kervarec N (2007) Evidence for the formation of terminal hydrides by protonation of an asymmetric iron hydrogenase active site mimic. Inorg Chem 46:3426–3428

    Article  CAS  PubMed  Google Scholar 

  156. Barton BE, Rauchfuss TB (2008) Terminal hydride in [FeFe]-hydrogenase model has lower potential for H2 production than the isomeric bridging hydride. Inorg Chem 47:2261–2263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Singleton ML, Bhuvanesh N, Reibenspies JH, Darensbourg MY (2008) Synthetic support of de novo design: sterically bulky [FeFe]-hydrogenase models. Angew Chemie Int Ed 47:9492–9495

    Article  CAS  Google Scholar 

  158. Adamska-Venkatesh A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W (2012) Identification and characterization of the “super-reduced” state of the H-cluster in [FeFe] hydrogenase: a new building block for the catalytic cycle? Angew Chemie Int Ed 51:11458–11462

    Article  Google Scholar 

  159. Katz S, Noth J, Horch M, Shafaat HS, Happe T, Hildebrandt P, Zebger I (2016) Vibrational spectroscopy reveals the initial steps of biological hydrogen evolution. Chem Sci 7:6746–6752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chernev P, Lambertz C, Brünje A, Leidel N, Sigfridsson KGV, Kositzki R, Chung-Hung Hsieh SY, Rafael Schiwon MD, Limberg C, Happe T, Haumann M (2014) Hydride binding to the active site of [FeFe]-hydrogenase. Inorg Chem 53:12164–12177

    Article  CAS  PubMed  Google Scholar 

  161. Mebs S, Senger M, Duan J, Wittkamp F, Apfel U-P, Happe T, Winkler M, Stripp ST, Haumann M (2017) Bridging hydride at reduced H-cluster species in [FeFe]-hydrogenases revealed by infrared spectroscopy, isotope editing, and quantum chemistry. J Am Chem Soc 139:12157–12160

    Article  CAS  PubMed  Google Scholar 

  162. Chongdar N, Birrell JA, Pawlak K, Sommer C, Reijerse EJ, Rüdiger O, Lubitz W, Ogata H (2018) Unique spectroscopic properties of the H-cluster in a putative sensory [FeFe] hydrogenase. J Am Chem Soc. https://doi.org/10.1021/jacs.7b11287. (in press)

    Article  PubMed  Google Scholar 

  163. Land H, Sekretaryova AN, Huang P, Redman HJ, Németh B, Polidori N, Mészáros L, Senger M, Stripp ST, Berggren G (2020) Characterization of a putative sensory [FeFe]-hydrogenase provides new insight into the role of the active site architecture. Chem Sci 11:12789–12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Birrell JA, Pelmenschikov V, Mishra N, Wang H, Yoda Y, Tamasaku K, Rauchfuss TB, Cramer SP, Lubitz W, DeBeer S (2020) Spectroscopic and computational evidence that [FeFe] hydrogenases operate exclusively with CO-bridged intermediates. J Am Chem Soc 142:222–232

    Article  CAS  PubMed  Google Scholar 

  165. Sommer C, Adamska-Venkatesh A, Pawlak K, Birrell JA, Rüdiger O, Reijerse EJ, Lubitz W (2017) Proton coupled electronic rearrangement within the H-cluster as an essential step in the catalytic cycle of [FeFe] hydrogenases. J Am Chem Soc 139:1440–1443

    Article  CAS  PubMed  Google Scholar 

  166. Winkler M, Senger M, Duan J, Esselborn J, Wittkamp F, Hofmann E, Apfel U-P, Stripp ST, Happe T (2017) Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases. Nat Commun 8:16115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rumpel S, Sommer C, Reijerse E, Farès C, Lubitz W (2018) Direct detection of the terminal hydride intermediate in [FeFe] hydrogenase by NMR spectroscopy. J Am Chem Soc 140:3863–3866

    Article  CAS  PubMed  Google Scholar 

  168. Senger M, Laun K, Wittkamp F, Duan J, Haumann M, Happe T, Winkler M, Apfel U-P, Stripp ST (2017) Protonengekoppelte reduktion des katalytischen [4Fe-4S]-Zentrums in [FeFe]-hydrogenasen. Angew Chemie 129:16728–16732

    Article  Google Scholar 

  169. Laun K, Baranova I, Duan J, Kertess L, Wittkamp F, Apfel U-P, Happe T, Senger M, Stripp ST (2021) Site-selective protonation of the one-electron reduced cofactor in [FeFe]-hydrogenase. Dalt Trans 50:3641–3650

    Article  CAS  Google Scholar 

  170. Senger M, Duan J, Pavliuk MV, Apfel U, Haumann M, Stripp ST (2022) Trap** an oxidized and protonated intermediate of the [FeFe]-hydrogenase cofactor under mildly reducing conditions. Inorg Chem 61:10036–10042

    Article  CAS  PubMed  Google Scholar 

  171. Greene BL, Schut GJ, Adams MWW, Dyer RB (2017) Pre-steady-state kinetics of catalytic intermediates of an [FeFe]-hydrogenase. ACS Catal 7:2145–2150

    Article  CAS  Google Scholar 

  172. Sanchez MLK, Sommer C, Reijerse E, Birrell JA, Lubitz W, Dyer RB (2019) Investigating the kinetic competency of Cr HydA1 [FeFe] hydrogenase intermediate states via time-resolved infrared spectroscopy. J Am Chem Soc 141:16064–16070

    Article  CAS  PubMed  Google Scholar 

  173. Sanchez MLK, Konecny SE, Narehood SM, Reijerse EJ, Lubitz W, Birrell JA, Dyer RB (2020) The laser-induced potential jump: a method for rapid electron injection into oxidoreductase enzymes. J Phys Chem B 124:8750–8760

    Article  CAS  PubMed  Google Scholar 

  174. Hunt NT (2009) 2D-IR spectroscopy: ultrafast insights into biomolecule structure and function. Chem Soc Rev 38:1837

    Article  CAS  PubMed  Google Scholar 

  175. Senger M, Mebs S, Duan J, Wittkamp F, Apfel U-P, Heberle J, Haumann M, Stripp ST (2016) Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics. Proc Natl Acad Sci USA 113:8454–8459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Horch M, Schoknecht J, Wrathall SLD, Greetham GM, Lenz O, Hunt NT (2019) Understanding the structure and dynamics of hydrogenases by ultrafast and two-dimensional infrared spectroscopy. Chem Sci 10:8981–8989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kulka-Peschke CJ, Schulz A-C, Lorent C, Rippers Y, Wahlefeld S, Preissler J, Schulz C, Wiemann C, Bernitzky CCM, Karafoulidi-Retsou C, Wrathall SLD, Procacci B, Matsuura H, Greetham GM, Teutloff C, Lauterbach L, Higuchi Y, Ishii M, Hunt NT, Lenz O, Zebger I, Horch M (2022) Reversible glutamate coordination to high-valent nickel protects the active site of a [NiFe] hydrogenase from oxygen. J Am Chem Soc 144:17022–17032

    Article  CAS  PubMed  Google Scholar 

  178. Wrathall SLD, Procacci B, Horch M, Saxton E, Furlan C, Walton J, Rippers Y, Blaza JN, Greetham GM, Towrie M, Parker AW, Lynam J, Parkin A, Hunt NT (2022) Ultrafast 2D-IR spectroscopy of [NiFe] hydrogenase from E. coli reveals the role of the protein scaffold in controlling the active site environment. Phys Chem Chem Phys 24:24767–24783

    Article  CAS  PubMed  Google Scholar 

  179. Tai H, Nishikawa K, Higuchi Y, Mao Z-WW, Hirota S (2019) Cysteine SH and glutamate COOH contributions to [NiFe] hydrogenase proton transfer revealed by highly sensitive FTIR spectroscopy. Angew Chemie Int Ed 58:13285–13290

    Article  CAS  Google Scholar 

  180. Ash PA, Carr SB, Reeve HA, Skorupskaite A, Rowbotham JS, Shutt R, Frogley MD, Evans RM, Cinque G, Armstrong FA, Vincent KA (2017) Generating single metalloprotein crystals in well-defined redox states: Electrochemical control combined with infrared imaging of a NiFe hydrogenase crystal. Chem Commun 53:5858–5861

    Article  CAS  Google Scholar 

  181. Ash PA, Kendall-Price SET, Evans RM, Carr SB, Brasnett AR, Morra S, Rowbotham JS, Hidalgo R, Healy AJ, Cinque G, Frogley MD, Armstrong FA, Vincent KA (2021) The crystalline state as a dynamic system: IR microspectroscopy under electrochemical control for a [NiFe] hydrogenase. Chem Sci 12:12959–12970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Sven T. Stripp is funded by the German Research Foundation (DFG) within the framework of SPP 1927 priority program “Iron-Sulfur for Life” (Grant No. STR1554/5-1). Jason W. Sidabras is funded by the Medical College of Wisconsin, while some results published in this work had funding from the European Union Horizon 2020 Marie Skłodowska-Curie Fellowship (no. 745702; ACT-EPR, https://act-epr.org) and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jason W. Sidabras or Sven T. Stripp.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidabras, J.W., Stripp, S.T. A personal account on 25 years of scientific literature on [FeFe]-hydrogenase. J Biol Inorg Chem 28, 355–378 (2023). https://doi.org/10.1007/s00775-023-01992-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-023-01992-5

Keywords

Navigation