Log in

Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO (2003) Prevention and management of osteoporosis. World Health Organ Tech Rep Ser 921:1–164

    Google Scholar 

  2. NIH (2001) NIH consensus development panel on osteoporosis prevention, diagnosis, and therapy, March 7–29, 2000: highlights of the conference. South Med J 94:569–573

    Google Scholar 

  3. Brunader R, Shelton DK (2002) Radiologic bone assessment in the evaluation of osteoporosis. Am Fam Physician 65:1357–1364

    PubMed  Google Scholar 

  4. Xue K, Ren-hui L, **u-juan W (2012) Advances on studies of anti-osteoporosis applications and mechanisms by Herba Epimedii and Fructus ligustri lucidi. Chin J Exp Tradit Med Formulae 18:331–334

    Google Scholar 

  5. Zhang Y, Lai WP, Leung PC, Wu CF, Yao XS, Wong MS (2006) Effects of Fructus ligustri lucidi extract on bone turnover and calcium balance in ovariectomized rats. Biol Pharm Bull 29:291–296

    Article  PubMed  Google Scholar 

  6. Zhang Y, Dong XL, Leung PC, Che CT, Wong MS (2008) Fructus ligustri lucidi extract improves calcium balance and modulates the calciotropic hormone level and vitamin D-dependent gene expression in aged ovariectomized rats. Menopause 15:558–565

    Article  PubMed  Google Scholar 

  7. Zhang Y, Leung PC, Che CT, Chow HK, Wu CF, Wong MS (2008) Improvement of bone properties and enhancement of mineralization by ethanol extract of Fructus ligustri lucidi. Br J Nutr 99:494–502

    CAS  PubMed  Google Scholar 

  8. Zhu K, Prince RL (2012) Calcium and bone. Clin Biochem 45:936–942

    Article  CAS  PubMed  Google Scholar 

  9. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–S11

    Article  CAS  PubMed  Google Scholar 

  10. Peterson CA, Eurell JA, Erdman JJ (1995) Alterations in calcium intake on peak bone mass in the female rat. J Bone Miner Res 10:81–95

    Article  CAS  PubMed  Google Scholar 

  11. Sengupta S, Arshad M, Sharma S, Dubey M, Singh MM (2005) Attainment of peak bone mass and bone turnover rate in relation to estrous cycle, pregnancy and lactation in colony-bred Sprague–Dawley rats: suitability for studies on pathophysiology of bone and therapeutic measures for its management. J Steroid Biochem Mol Biol 94:421–429

    Article  CAS  PubMed  Google Scholar 

  12. Li G, Zhang XA, Zhang JF, Chan CY, Yew DT, He ML, Lin MC, Leung PC, Kung HF (2010) Ethanol extract of Fructus ligustri lucidi promotes osteogenesis of mesenchymal stem cells. Phytother Res 24:571–576

    CAS  PubMed  Google Scholar 

  13. Christakos S, Dhawan P, Porta A, Mady LJ, Seth T (2011) Vitamin D and intestinal calcium absorption. Mol Cell Endocrinol 347:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Bronner F (2009) Recent developments in intestinal calcium absorption. Nutr Rev 67:109–113

    Article  PubMed  Google Scholar 

  15. Fleet JC, Schoch RD (2010) Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 47:181–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Miller WL, Portale AA (2000) Vitamin D 1 alpha-hydroxylase. Trends Endocrinol Metab 11:315–319

    Article  CAS  PubMed  Google Scholar 

  17. Bikle DD (2012) Vitamin D and bone. Curr Osteoporos Rep 10:151–159

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cole JH, van der Meulen MC (2011) Whole bone mechanics and bone quality. Clin Orthop Relat Res 469:2139–2149

    Article  PubMed Central  PubMed  Google Scholar 

  19. Friedman AW (2006) Important determinants of bone strength: beyond bone mineral density. J Clin Rheumatol 12:70–77

    Article  PubMed  Google Scholar 

  20. van der Meulen MC, Boskey AL (2012) Atypical subtrochanteric femoral shaft fractures: role for mechanics and bone quality. Arthritis Res Ther 14:220

    Article  PubMed Central  PubMed  Google Scholar 

  21. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213234

    PubMed Central  PubMed  Google Scholar 

  22. Srivastava K, Khan K, Tyagi AM, Khan MP, Yadav DK, Trivedi R, Maurya R, Singh D, Chattopadhyay N (2013) Greater skeletal gains in ovary intact rats at maturity are achieved by Supplementing a standardized extract of Butea monosperma stem bark that confers better bone conserving effect following ovariectomy and concurrent treatment withdrawal. Evid Based Complement Alternat Med 2013:519387

    PubMed Central  PubMed  Google Scholar 

  23. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A (2010) RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109:679–686

    Article  PubMed  Google Scholar 

  24. Bai YD, Yang FS, Xuan K, Bai YX, Wu BL (2008) Inhibition of RANK/RANKL signal transduction pathway: a promising approach for osteoporosis treatment. Med Hypotheses 71:256–258

    Article  CAS  PubMed  Google Scholar 

  25. Blair JM, Zheng Y, Dunstan CR (2007) RANK ligand. Int J Biochem Cell Biol 39:1077–1081

    Article  CAS  PubMed  Google Scholar 

  26. Boyce BF, **ng L (2007) Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9:S1

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA 292:490–495

    Article  CAS  PubMed  Google Scholar 

  28. Lee YS, Choi EM (2011) Costunolide stimulates the function of osteoblastic MC3T3-E1 cells. Int Immunopharmacol 11:712–718

    Article  CAS  PubMed  Google Scholar 

  29. Li F, Yang Y, Zhu P, Chen W, Qi D, Shi X, Zhang C, Yang Z, Li P (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83:1443–1450

    Article  CAS  PubMed  Google Scholar 

  30. Vasikaran S, Eastell R, Bruyere O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  CAS  PubMed  Google Scholar 

  31. Malaval L, Modrowski D, Gupta AK, Aubin JE (1994) Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 158:555–572

    Article  CAS  PubMed  Google Scholar 

  32. Wang D, Christensen K, Chawla K, **ao G, Krebsbach PH, Franceschi RT (1999) Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. J Bone Miner Res 14:893–903

    Article  CAS  PubMed  Google Scholar 

  33. Li JF, Chen SJ, Zhao Y, Li JX (2009) Glycoside modification of oleanolic acid derivatives as a novel class of anti-osteoclast formation agents. Carbohydr Res 344:599–605

    Article  CAS  PubMed  Google Scholar 

  34. Li JF, Zhao Y, Cai MM, Li XF, Li JX (2009) Synthesis and evaluation of a novel series of heterocyclic oleanolic acid derivatives with anti-osteoclast formation activity. Eur J Med Chem 44:2796–2806

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Y, Li JX, Zhao J, Wang SZ, Pan Y, Tanaka K, Kadota S (2005) Synthesis and activity of oleanolic acid derivatives, a novel class of inhibitors of osteoclast formation. Bioorg Med Chem Lett 15:1629–1632

    Article  CAS  PubMed  Google Scholar 

  36. Xu Y, Han X, Li Y (2010) Effect of marine collagen peptides on long bone development in growing rats. J Sci Food Agric 90:1485–1491

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajun Xu or Haotian Feng.

Additional information

Y. Lyu and X. Feng contributed equally to this work.

About this article

Cite this article

Lyu, Y., Feng, X., Zhao, P. et al. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats. J Bone Miner Metab 32, 616–626 (2014). https://doi.org/10.1007/s00774-013-0536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-013-0536-8

Keywords

Navigation