Log in

Wavelet transform analysis of NMR structure ensembles to reveal internal fluctuations of enzymes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Internal motions and flexibility are essential for biological functions in proteins. To assess the internal fluctuations and conformational flexibility of proteins, reliable computational methods are needed. In this study, wavelet transformation was used to filter out the noise and facilitate investigating the internal positional fluctuations of enzymes within nuclear magnetic resonance (NMR) structure ensembles. Moreover, potential active sites were identified by combining with positional fluctuation score, sequence conservation, and solvent accessible surface area. Among the total 107 catalytic residues in 44 examined enzymes, 69 residues were identified correctly. Our results suggest that wavelet transform analysis of structure ensemble is applicable to extract essential fluctuation information of proteins; furthermore, analysis of positional fluctuations is helpful for the identification of catalytic residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Askar A, Cetin AE, Rabitz H (1996) Wavelet transform for analysis of molecular dynamics. J Phys Chem 100:19165–19173

    Article  CAS  Google Scholar 

  • Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    Article  PubMed  CAS  Google Scholar 

  • Bakan A, Bahar I (2009) The intrinsic dynamics of enzymes plays a dominant role in determining the structural changes induced upon inhibitor binding. Proc Natl Acad Sci USA 106:14349–14354

    Article  PubMed  CAS  Google Scholar 

  • Balsera MA, Wriggers W, Oono Y, Schulten K (1996) Principal component analysis and long time protein dynamics. J Phys Chem 100:2567–2572

    Article  CAS  Google Scholar 

  • Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121

    Article  PubMed  CAS  Google Scholar 

  • Berendsen HJC, Hayward S (2000) Collective protein dynamics in relation to function. Curr Opin Struct Biol 10:165–169

    Article  PubMed  CAS  Google Scholar 

  • Best RB, Lindorff-Larsen K, DePristo MA, Vendruscolo M (2006) Relation between native ensembles and experimental structures of proteins. Proc Natl Acad Sci USA 103:10901–10906

    Article  PubMed  CAS  Google Scholar 

  • Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:3055–3079

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Bahar I (2004) Mining frequent patterns in protein structures: a study of protease families. Bioinformatics 20:i77–i85

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1988) Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30:3–48

    Article  PubMed  CAS  Google Scholar 

  • Ehrentreich F (2002) Wavelet transform applications in analytical chemistry. Anal Bioanal Chem 372:115–121

    Article  PubMed  CAS  Google Scholar 

  • Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during catalysis. Science 295:1520–1523

    Article  PubMed  CAS  Google Scholar 

  • Erkip A, Erman B (2004) Dynamics of large-scale fluctuations in native proteins. Analysis based on harmonic inter-residue potentials and random external noise. Polymer 45:641–648

    Article  CAS  Google Scholar 

  • Fadili JM, Boubchir L (2005) Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE T IMAGE PROCESS 14:231–240

    Article  Google Scholar 

  • Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Comp Methods Macromol Seq Anal 266:540–553

    Article  CAS  Google Scholar 

  • Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    Article  PubMed  CAS  Google Scholar 

  • Hess B (2000) Similarities between principal components of protein dynamics and random diffusion. Phys Rev E 62:8438–8448

    Article  CAS  Google Scholar 

  • Howe PWA (2001) Principal components analysis of protein structure ensembles calculated using NMR data. J Biomol NMR 20:61–70

    Article  PubMed  CAS  Google Scholar 

  • Hub JS, de Groot BL (2009) Detection of functional modes in protein dynamics. Plos Comput Biol 5:e1000480

    Article  PubMed  Google Scholar 

  • Kabsch W (1978) A discussion of the solution for the best rotation to relate two sets of vectors. Acta Cryst 34:827–828

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure—pattern-recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, McCammon JA (1981) The internal dynamics of globular-proteins. CRC Crit Rev Biochem 9:293–349

    Article  PubMed  CAS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  PubMed  CAS  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E et al (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–W302

    Article  PubMed  CAS  Google Scholar 

  • Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KFA et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  PubMed  CAS  Google Scholar 

  • Lequin O, Albaret C, Bontems F, Spik G, Lallemand JY (1996) Solution structure of bovine angiogenin by H-1 nuclear magnetic resonance spectroscopy. Biochemistry 35:8870–8880

    Article  PubMed  CAS  Google Scholar 

  • Leung AKM, Chau FT, Gao JB (1998) A review on applications of wavelet transform techniques in chemical analysis: 1989–1997. Chemom Intell Lab Syst 43:165–184

    Article  CAS  Google Scholar 

  • Li YZ, Wen ZN, Zhou CS, Tan FY, Li ML (2008) Effects of neighboring sequence environment in predicting cleavage sites of signal peptides. Peptides 29:1498–1504

    Article  PubMed  CAS  Google Scholar 

  • Lina JM, Mayrand M (1995) Complex Daubechies wavelets. Appl Comput Harmon A 2:219–229

    Article  Google Scholar 

  • Mahmoodabadi SZ, Ahmadian A, Abolhasani MD (2005) ECG feature extraction using Daubechies wavelets. Proceedings of the fifth IASTED international conference on visualization, imaging, and image processing: 343–348

  • Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385:312–329

    Article  PubMed  CAS  Google Scholar 

  • Moore M (2002) The use of Wavelets for Determining Wing Flexure in Airborne GPS Multi-Antenna Attitude Determination Systems. Proceedings of ION GPS-2002: 1022–1029

  • Okan OB, Atilgan AR, Atilgan C (2009) Nanosecond motions in proteins impose bounds on the timescale distributions of local dynamics. Biophys J 97:2080–2088

    Article  PubMed  CAS  Google Scholar 

  • Otsuka T, Nakai H (2007) Wavelet transform analysis of ab initio molecular dynamics simulation: application to core-excitation dynamics of BF3. J Comput Chem 28:1137–1144

    Article  PubMed  CAS  Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The catalytic site atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32:D129–D133

    Article  PubMed  CAS  Google Scholar 

  • Rahaman A, Wheeler RA (2005) Wavelet transforms for determining time-dependent vibrational frequencies. J Chem Theory Comput 1:769–771

    Article  CAS  Google Scholar 

  • Ramanathan A, Agarwal PK (2009) Computational identification of slow conformational fluctuations in proteins. J Phys Chem B 113:16669–16680

    Article  PubMed  CAS  Google Scholar 

  • Tang YR, Sheng ZY, Chen YZ, Zhang ZD (2008) An improved prediction of catalytic residues in enzyme structures. Protein Eng Des Sel 21:295–302

    Article  PubMed  CAS  Google Scholar 

  • Tousignant A, Pelletier JN (2004) Protein motions promote catalysis. Chem Biol 11:1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Wen ZN, Wang KL, Li ML, Nie FS, Yang Y (2005) Analyzing functional similarity of protein sequences with discrete wavelet transform. Comput Biol Chem 29:220–228

    Article  PubMed  CAS  Google Scholar 

  • Wu D (2006) Distance-based protain structure modeling. Ph.D. thesis, Program on Bioinformatics and Computational Biology and Department of Mathematics, Iowa State University

  • Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 13:893–904

    Article  PubMed  Google Scholar 

  • Yang DW, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382

    Article  PubMed  CAS  Google Scholar 

  • Yang LW, Liu X, Jursa CJ, Holliman M, Rader A et al (2005) iGNM: a database of protein functional motions based on Gaussian Network Model. Bioinformatics 21:2978–2987

    Article  PubMed  CAS  Google Scholar 

  • Yang LW, Eyal E, Chennubhotla C, Jee J, Gronenborn AM et al (2007) Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure 15:741–749

    Article  PubMed  Google Scholar 

  • Yang LW, Eyal E, Bahar I, Kitao A (2009) Principal component analysis of native ensembles of biomolecular structures (PCA_NEST): insights into functional dynamics. Bioinformatics 25:606–614

    Article  PubMed  CAS  Google Scholar 

  • Yuan CH, Byeon IJL, Li YS, Tsai MD (1999) Structural analysis of phospholipase A(2) from functional perspective. 1. Functionally relevant solution structure and roles of the hydrogen-bonding network. Biochemistry 38:2909–2918

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No.20972103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menglong Li.

Additional information

Source code is available from http://cic.scu.edu.cn/bioinformatics/wt_nmrst.zip.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, M., Li, Y., Yang, G. et al. Wavelet transform analysis of NMR structure ensembles to reveal internal fluctuations of enzymes. Amino Acids 42, 1773–1781 (2012). https://doi.org/10.1007/s00726-011-0895-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0895-1

Keywords

Navigation