Log in

Salty Water in KOH-Doped Hexagonal Ice: a Proton and Deuteron NMR Study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Water doped with 10−2 mol of KOH was cooled to temperatures at which most of the solution freezes to form hexagonal ice. Using proton and deuteron spin–lattice relaxometry as well as static field gradient diffusometry, it was found that a liquid-like phase coexists with the crystal down to below 200 K. The ionic dopants are expelled from the crystalline phase and form a KOH-enriched aqueous solution probably in the form of inclusions within the ice crystal. Its self-diffusion coefficient is only slightly smaller than that of nominally pure water. Motional correlation times were determined on the basis of spin–lattice relaxation times and compared with previous electrical conductivity and calorimetry results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This slight slow-down of the diffusion of the liquid-like component with respect to that of nominally pure water possibly arises from the hydration of the ions which are additionally present in the doped samples.

  2. Obstruction effects arise if the space in which a particle can diffuse is partially blocked, as e.g., in porous media.

References

  1. V.F. Petrenko, R.W. Whitworth, Physics of Ice (University Press, Oxford, 1999)

    Google Scholar 

  2. Y. Tajima, T. Matsuo, H. Suga, Phase transition in KOH doped hexagonal ice. Nature 299, 810 (1982)

    Article  ADS  Google Scholar 

  3. S. Kawada, Dielectric Dispersion and Phase Transition of KOH Doped Ice. J. Phys. Soc. Jpn. 32, 1442 (1972)

    Article  ADS  Google Scholar 

  4. Y. Tajima, T. Matsuo, H. Suga, Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides. J. Phys. Chem. Solids 45, 135 (1984)

    Article  Google Scholar 

  5. M. Tyagi, S.S.N. Murthy, Dielectric Relaxation in Ice and Ice Clathrates and Its Connection to the Low-Temperature Phase Transition Induced by Alkali Hydroxides as Dopants. J. Phys. Chem. A 106, 5072 (2002)

    Article  Google Scholar 

  6. R. Howe, R.W. Whitworth, The electrical conductivity of KOH-doped ice from 70 to 250 K. J. Phys. Chem. Solids 50, 963 (1989)

    Article  ADS  Google Scholar 

  7. F. Fujara, S. Wefing, W.F. Kuhs, Direct observation of tetrahedral hydrogen jumps in ice 1 h. J. Chem. Phys. 88, 801 (1988)

    Article  Google Scholar 

  8. R.J. Wittebort, M.G. Usha, D.J. Ruben, D.E. Wemmer, A. Pines, Observation of molecular reorientation in ice by proton and deuterium magnetic resonance. J. Am. Chem. Soc. 110, 5668 (1988)

    Article  Google Scholar 

  9. B. Geil, T.M. Kirschgen, F. Fujara, Mechanism of proton transport in hexagonal ice. Phys. Rev. B 72, 014304 (2005)

    Article  ADS  Google Scholar 

  10. A. Nowaczyk, H. Nelson, S. Schildmann, C. Gainaru, B. Geil, and R. Böhmer (in preparation).

  11. M. Bach-Vergés, S.J. Kitchin, K.D.M. Harris, M. Zugic, C.A. Koh, Dynamic properties of the tetrahydrofuran clathrate hydrate, investigated by solid state 2H NMR spectroscopy. J. Phys. Chem. B 105, 2699 (2001)

    Article  Google Scholar 

  12. T.M. Kirschgen, M.D. Zeidler, B. Geil, F. Fujara, A deuteron NMR study of the tetrahydrofuran clathrate hydrate. Part II: Coupling of rotational and translational dynamics of water. Phys. Chem. Chem. Phys. 5, 5247 (2003)

    Article  Google Scholar 

  13. H. Nelson, A. Nowaczyk, C. Gainaru, S. Schildmann, B. Geil, R. Böhmer, Deuteron nuclear magnetic resonance and dielectric study of host and guest dynamics in KOH doped tetrahydrofuran clathrate hydrate. Phys. Rev. B 81, 224206 (2010)

    Article  ADS  Google Scholar 

  14. O.B. Nasello, S. Navarro de Juarez, C.L. Di Prinzio, Measurement of self-diffusion on ice surface. Scripta Materialia 56, 1071 (2007)

    Article  Google Scholar 

  15. Y. Furukawa, M. Yamamoto, T. Kuroda, Ellipsometric study of the transition layer on the surface of an ice crystal. J. Cryst. Growth 82, 665 (1987)

    Article  ADS  Google Scholar 

  16. H. Dosh, A. Lied, J.H. Bilgram, Glancing-angle X-ray scattering studies of the premelting of ice surfaces. Surf. Sci. 327, 145 (1995)

    Article  ADS  Google Scholar 

  17. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimäki, A. Snigirev, Interfacial Melting of Ice in Contact with SiO2. Phys. Rev. Lett. 92, 205701 (2004)

    Article  ADS  Google Scholar 

  18. Y. Mizuno, N. Hanafusa, Studies of surface-properties of ice using nuclear magnetic resonance. J. Phys. (Paris) Colloq. 48, 511 (1987)

    Article  Google Scholar 

  19. T. Ishizaki, M. Maruyama, Y. Furukawa, J.G. Dash, Premelting of ice in porous silica glass. J. Cryst. Growth 163, 455 (1996)

    Article  ADS  Google Scholar 

  20. F.E. Livingston, J.A. Smith, S.M. George, General trends for bulk diffusion in ice and surface diffusion on ice. J. Phys. Chem. A 106, 6309 (2002)

    Article  Google Scholar 

  21. R. Cohen-Adad, M. Michaud, Les equilibres liquide-solide du systeme binaire eau-potasse. C. R. Acad. Sci. 242, 2569 (1956)

    Google Scholar 

  22. G. Vuillard, Vitrification des solutions aqueuses. Publ. Sci. Univ. Alger. B 3, 80 (1957)

    Google Scholar 

  23. P.P. Kobeko, E.V. Kuvshinski, N.J. Shishkin, Studies of the Amorphous State 10: a study of the conductivity of strong electrolytes in the amorphous state. Acta Physicochim. U.R.S.S. 6, 255 (1937)

    Google Scholar 

  24. A. Steinemann, Dielektrische Eigenschaften von Eiskristallen. II. Teil: Dielektrische Untersuchungen an Eiskristallen mit eingelagerten Fremdatomen. Helv. Phys. Acta 30, 581 (1957)

    Google Scholar 

  25. J.H. Bilgram, J. Roos, H. Gränicher, Spin-lattice relaxation in HF and NH3 doped ice and the outdiffusion of impurities. Z. Physik B 23, 1 (1976)

    Article  ADS  Google Scholar 

  26. L. Vrbka, P. Jungwirth, Brine rejection from freezing salt solutions: a molecular dynamics study. Phys. Rev. Lett. 95, 148501 (2005)

    Article  ADS  Google Scholar 

  27. J.G. Dash, A.W. Rempel, J.S. Wettlaufer, The physics of premelted ice. Rev. Mod. Phys. 78, 695 (2006)

    Article  ADS  Google Scholar 

  28. B. Geil, Measurement of translational molecular diffusion using Ultrahigh magnetic field gradient NMR. Concepts Magn. Reson. 10, 299 (1998)

    Article  Google Scholar 

  29. N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  30. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Dynamics of supercooled liquids and glassy solids. Prog. Nucl. Magn. Reson. Spectrosc. 39, 191 (2001)

    Article  Google Scholar 

  31. H.R. Pruppacher, Self-diffusion coefficient of supercooled water. J. Chem. Phys. 56, 101 (1972)

    Article  ADS  Google Scholar 

  32. K.T. Gillen, D.C. Douglass, M.J.R. Hoch, Self-diffusion in liquid water to −31 °C. J. Chem. Phys. 57, 5117 (1972)

    Article  ADS  Google Scholar 

  33. R. Mills, Self-diffusion in normal and heavy water in the range 1–45 °C. J. Phys. Chem. 77, 685 (1973)

    Article  Google Scholar 

  34. M. Holz, S.R. Heil, A. Sacco, Temperature dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2, 4740 (2000)

    Article  Google Scholar 

  35. T. Feiweier, B. Geil, E.M. Pospiech, F. Fujara, R. Winter, NMR study of translational and rotational dynamics in monoolein-water mesophases: Obstruction and hydration effects. Phys. Rev. E 62, 8182 (2000)

    Article  ADS  Google Scholar 

  36. H. G. Hertz, Translational motions as studied by nuclear magnetic resonance, in Molecular Motion in Liquids, ed. by J. Lascombe (Reidel, Dordrecht, 1974) p. 337ff

  37. C. Rønne, S.R. Keiding, Low frequency spectroscopy of liquid water using THz time domain spectroscopy. J. Mol. Liq. 101, 199 (2002)

    Article  Google Scholar 

  38. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, Non-exponential relaxations in strong and fragile glass-formers. J. Chem. Phys. 99, 4201 (1993)

    Article  ADS  Google Scholar 

  39. I.M. Hodge, C.A. Angell, Electrical relaxation in amorphous protonic conductors. J. Chem. Phys. 67, 4 (1977)

    Article  Google Scholar 

  40. W.C. Hasz, C.T. Moynihan, P.A. Tick, Electrical relaxation in a CdF2–LiF–AlF3–PbF2 glass and melt. J. Non-Cryst Solids 172–174, 1363 (1994)

    Article  Google Scholar 

  41. A. Pimenov, A. Loidl, R. Böhmer, Structural relaxation in a molten salt probed by time-dependent dc conductivity measurements. J. Non-Cryst. Solids 212, 89 (1997)

    Article  ADS  Google Scholar 

  42. Z. Wojnarowska, C.M. Roland, K. Kolodziejczyk, A. Swiety-Pospiech, K. Grzybowska, M. Paluch, Quantifying the structural dynamics of pharmaceuticals in the glassy state. J. Phys. Chem. Lett. 3, 1238 (2012)

    Article  Google Scholar 

  43. H. Didzoleit, C. Gainaru, R. Böhmer (in preparation)

  44. M. Frey, H. Didzoleit, C. Gainaru, R. Böhmer (in preparation)

  45. I.A. Ryzhkin, V.F. Petrenko, Violation of ice rules near the surface: A theory for the quasiliquid layer. Phys. Rev. B 65, 012205 (2001)

    Article  ADS  Google Scholar 

  46. I.A. Ryzhkin, V.F. Petrenko, Quasi-liquid layer theory based on the bulk first order phase transition. JETP 108, 68 (2009)

    Article  ADS  Google Scholar 

  47. C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Effects of confinement on freezing and melting. J. Phys. Condens. Matter 18, R15 (2006)

    Article  ADS  Google Scholar 

  48. J.B.W. Webber, J.C. Dore, J.H. Strange, R. Anderson, B. Tohidi, Plastic ice in confined geometry: the evidence from neutron diffraction and NMR relaxation. J. Phys. Condens. Matter 19, 415117 (2007)

    Article  Google Scholar 

  49. C.A. Angell, Liquid fragility and the glass transition in water and aqueous solutions. Chem. Rev. 102, 262 (2002)

    Article  Google Scholar 

  50. J.-M. Zanotti, M.-C. Bellissent-Funel, S.-H. Chen, Experimental evidence of a liquid–liquid transition in interfacial water. Europhys. Lett. 71, 91 (2005)

    Article  ADS  Google Scholar 

  51. A. Geiger and D. Paschek, Properties of Water, in Wiley Encyclopedia of Chemical Biology (Wiley-VCH, Weinheim, 2008) pp. 1–9

  52. C.A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties. Science 319, 582 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Helge Nelson for interesting discussions. Support of this project by the Deutsche Forschungsgemeinschaft under grant no. BO1301/7 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schildmann.

Additional information

Dedicated to Prof. Dr. Hans Martin Vieth on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schildmann, S., Schöler, A., Nowaczyk, A. et al. Salty Water in KOH-Doped Hexagonal Ice: a Proton and Deuteron NMR Study. Appl Magn Reson 44, 203–215 (2013). https://doi.org/10.1007/s00723-012-0414-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0414-x

Keywords

Navigation