Log in

Bending behaviour of steel–concrete composite beam with partial shear interface using MCS and ANN

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A one-dimensional Co finite element model (FEM) based on cubic-order beam theory in conjunction with the artificial neural network–genetic algorithm (ANN–GA) and artificial neural network–grey wolf optimization (ANN–GWO) metamodels has been adopted for the bending analysis of the pervious composite beam. The axial displacement field is a third-order equation and a function of the variation of the thickness of the beam. The parabolic variation of the shear stress is assumed; therefore, the shear stress value is zero at the extreme surface of the beam. The validation of the presented model has been done with the published research work and found suitable for further analysis. The Monte Carlo simulation–finite element method (MCS–FEM) has been developed and coded in the FORTRAN environment. The dataset obtained from MCSFEM is used for the training and testing of the machine learning model. The ANN–GA and ANN–GWO metamodels are coded in the MATLAB environment. The various statistical parameters, regression analysis, and rank analysis have been done to find out the accuracy and efficiency of the proposed soft computation metamodels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pelke, E., Kurrer, K.-E.: On the evolution of steel-concrete composite construction. In: Fifth International Congress on Construction History. pp. 107–116 (2015)

  2. Rohn, A.: Der Neubau der Achereggbrücke über die See-Enge des Vierwaldstättersees bei Stansstad. Rascher & Cie (1915)

  3. Shariati, A.: Various types of shear connectors in composite structures: a review. Int. J. Phys. Sci. (2012). https://doi.org/10.5897/IJPSX11.004

    Article  Google Scholar 

  4. von Emperger, F.E.: Handbuch für Eisenbetonbau. Wilhelm Ernst & Sohn, BERLIN (1912)

    Google Scholar 

  5. Newmark, N.M.: Test and analysis of composite beam with incomplete interaction. Proc. Soc. Exp. Stress Anal. 9, 75–92 (1951)

    Google Scholar 

  6. Zou, Y., Zhou, X.H., Di, J., Qin, F.J.: Partial interaction shear flow forces in simply supported composite steel-concrete beams. Adv. Steel Constr. 14, 634–650 (2018). https://doi.org/10.18057/IJASC.2018.14.7

    Article  Google Scholar 

  7. Satasivam, S., Feng, P., Bai, Y., Caprani, C.: Composite actions within steel-FRP composite beam systems with novel blind bolt shear connections. Eng. Struct. 138, 63–73 (2017). https://doi.org/10.1016/j.engstruct.2017.01.068

    Article  Google Scholar 

  8. Queiroz, F.D., Vellasco, P.C.G.S., Nethercot, D.A.: Finite element modelling of composite beams with full and partial shear connection. J. Constr. Steel Res. 63, 505–521 (2007). https://doi.org/10.1016/j.jcsr.2006.06.003

    Article  Google Scholar 

  9. Girhammar, U.A., Pan, D.: Dynamic analysis of composite members with interlayer slip. Int. J. Solids Struct. 30, 797–823 (1993). https://doi.org/10.1016/0020-7683(93)90041-5

    Article  Google Scholar 

  10. Sun, Q., Zhang, N., Yan, G., Zhu, X., Liu, X., Li, W.: Exact dynamic characteristic analysis of steel-concrete composite continuous beams. Shock Vib. (2021). https://doi.org/10.1155/2021/5577276

    Article  Google Scholar 

  11. Su, H., Banerjee, J.R.: Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams. Comput. Struct. 147, 107–116 (2015). https://doi.org/10.1016/j.compstruc.2014.10.001

    Article  Google Scholar 

  12. Xu, R., Wu, Y.: Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko’s beam theory. Int. J. Mech. Sci. 49, 1139–1155 (2007). https://doi.org/10.1016/j.ijmecsci.2007.02.006

    Article  Google Scholar 

  13. Nguyen, Q.H., Martinelli, E., Hjiaj, M.: Derivation of the exact stiffness matrix for a two-layer Timoshenko beam element with partial interaction. Eng. Struct. 33, 298–307 (2011). https://doi.org/10.1016/j.engstruct.2010.10.006

    Article  Google Scholar 

  14. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. Trans. ASME. 51, 745–752 (1984). https://doi.org/10.1115/1.3167719

    Article  Google Scholar 

  15. Taj, M.G., Chakrabarti, A., Talha, M.: Bending analysis of functionally graded skew sandwich plates with through-the thickness displacement variations. J. Sandwich Struct. Mater. 16, 210 (2014)

    Article  Google Scholar 

  16. Lezgy-Nazargah, M., Kafi, L.: Analysis of composite steel-concrete beams using a refined high-order beam theory. Steel Compos. Struct. 18, 1353–1368 (2015). https://doi.org/10.12989/scs.2015.18.6.1353

    Article  Google Scholar 

  17. Chakrabarti, A., Sheikh, A.H., Griffith, M., Oehlers, D.J.: Analysis of composite beams with partial shear interactions using a higher order beam theory. Eng. Struct. 36, 283–291 (2012). https://doi.org/10.1016/j.engstruct.2011.12.019

    Article  Google Scholar 

  18. Lawson, M., Wickens, P.: Composite beams. Steel Des. Man. Steel Constr. Instit. 8, 601–650 (2008). https://doi.org/10.1002/9780470775097.ch21

    Article  Google Scholar 

  19. Heshmati, M., Daneshmand, F.: Vibration analysis of non-uniform porous beams with functionally graded porosity distribution. Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl. 233, 1678–1697 (2019). https://doi.org/10.1177/1464420718780902

    Article  Google Scholar 

  20. Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y., Gao, W.: Dynamic analysis of functionally graded porous structures through finite element analysis. Eng. Struct. 165, 287–301 (2018). https://doi.org/10.1016/j.engstruct.2018.03.023

    Article  Google Scholar 

  21. Pradeep, T., GuhaRay, A., Bardhan, A., Samui, P., Kumar, S., Armaghani, D.J.: Reliability and prediction of embedment depth of sheet pile walls using hybrid ANN with optimization techniques. Arab. J. Sci. Eng. 47, 12853–12871 (2022). https://doi.org/10.1007/s13369-022-06607-w

    Article  Google Scholar 

  22. Wang, Q., Li, Q., Wu, D., Yu, Y., Tin-loi, F., Ma, J.: Machine learning aided static structural reliability analysis for functionally graded frame structures. Appl. Math. Model. 78, 792–815 (2020). https://doi.org/10.1016/j.apm.2019.10.007

    Article  MathSciNet  Google Scholar 

  23. Thanh, H., Hieu, D., Phan, C.: Assessment of critical buckling load of functionally graded plates using artificial neural network modeling. Neural Comput. Appl. 33, 16425–16437 (2021). https://doi.org/10.1007/s00521-021-06238-6

    Article  Google Scholar 

  24. Do, D.T.T., Lee, D., Lee, J.: Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems. Compos. Part B 159, 300–326 (2019). https://doi.org/10.1016/j.compositesb.2018.09.087

    Article  Google Scholar 

  25. Karamov, R., Akhatov, I., Sergeichev, I.V.: Prediction of fracture toughness of pultruded composites based on supervised machine learning. Polymers 14, 3619 (2022)

    Article  Google Scholar 

  26. Xu, W., Fu, Z.: Thermal conductivity identification in functionally graded materials via a machine learning strategy based on singular boundary method. Mathematics 10, 458 (2022)

    Article  Google Scholar 

  27. Zazoum, B., Triki, E., Bachri, A.: Modeling of mechanical properties of clay-reinforced polymer nanocomposites using deep neural network. Materials 13, 1996–1944 (2020). https://doi.org/10.3390/ma13194266

    Article  Google Scholar 

  28. Chakravarty, S., Garg, P., Kumar, A., Agrawal, M., Prabhat, K.: Deep neural networks based predictive-generative framework for designing composite materials. Sci. Eng. 30, 1–27 (2022)

    Google Scholar 

  29. Wang, Q., Wu, D., Tin-loi, F., Gao, W.: Thin-walled structures machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures. Thin-Wall. Struct. 144, 8 (2019). https://doi.org/10.1016/j.tws.2019.106315

    Article  Google Scholar 

  30. Gu, G.X., Chen, C., Buehler, M.J.: De novo composite design based on machine learning algorithm. Extreme Mech. Lett. 18, 19–28 (2018). https://doi.org/10.1016/j.eml.2017.10.001

    Article  Google Scholar 

  31. Ding, X., Hou, X., **a, M., Ismail, Y., Ye, J.: Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN). Compos. Struct. 302, 116248 (2022). https://doi.org/10.1016/j.compstruct.2022.116248

    Article  Google Scholar 

  32. Bülbül, M.A., Harirchian, E., Işık, M.F., Aghakouchaki Hosseini, S.E., Işık, E.: A Hybrid ANN-GA model for an automated rapid vulnerability assessment of existing RC buildings. Appl. Sci. (2022). https://doi.org/10.3390/app12105138

    Article  Google Scholar 

  33. Chandwani, V., Agrawal, V., Nagar, R.: Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst. Appl. 42, 885–893 (2015). https://doi.org/10.1016/j.eswa.2014.08.048

    Article  Google Scholar 

  34. Wu, N.J.: Predicting the compressive strength of concrete using an RBF-ann model. Appl. Sci. (2021). https://doi.org/10.3390/app11146382

    Article  Google Scholar 

  35. Ferreira, F.P.V., Shamass, R., Limbachiya, V., Tsavdaridis, K.D., Martins, C.H.: Lateral–torsional buckling resistance prediction model for steel cellular beams generated by Artificial Neural Networks (ANN). Thin-Wall Struct. 170, 108592 (2022). https://doi.org/10.1016/j.tws.2021.108592

    Article  Google Scholar 

  36. Jeyasehar, C.A., Sumangala, K.: Damage assessment of prestressed concrete beams using artificial neural network (ANN) approach. Comput. Struct. 84, 1709–1718 (2006). https://doi.org/10.1016/j.compstruc.2006.03.005

    Article  Google Scholar 

  37. Kilicarslan, S., Celik, M., Sahin, Ş: Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification. Biomed. Signal Process. Control. (2021). https://doi.org/10.1016/j.bspc.2020.102231

    Article  Google Scholar 

  38. Kociecki, M., Adeli, H.: Two-phase genetic algorithm for topology optimization of free-form steel space-frame roof structures with complex curvatures. Eng. Appl. Artif. Intell. 32, 218–227 (2014). https://doi.org/10.1016/j.engappai.2014.01.010

    Article  Google Scholar 

  39. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  40. Joshi, H., Arora, S.: Enhanced grey wolf optimization algorithm for global optimization. Fundam. Informaticae. 153, 235–264 (2017). https://doi.org/10.3233/FI-2017-1539

    Article  MathSciNet  Google Scholar 

  41. Andalib, A., Aminnejad, B., Lork, A.: Grey wolf optimizer-based ANNs to predict the compressive strength of self-compacting concrete. Appl. Comput. Intell. Soft Comput. (2022). https://doi.org/10.1155/2022/9887803

    Article  Google Scholar 

  42. Cinar, A.C., Natarajan, N.: An artificial neural network optimized by grey wolf optimizer for prediction of hourly wind speed in Tamil Nadu. India. Intell. Syst. with Appl. 16, 200138 (2022). https://doi.org/10.1016/j.iswa.2022.200138

    Article  Google Scholar 

  43. Muro, C., Escobedo, R., Spector, L., Cop**er, R.P.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Process. 88, 192–197 (2011). https://doi.org/10.1016/j.beproc.2011.09.006

    Article  Google Scholar 

  44. Shen, X., Chen, W., Wu, Y., Xu, R.: Dynamic analysis of partial-interaction composite beams. Compos. Sci. Technol. 71, 1286–1294 (2011). https://doi.org/10.1016/j.compscitech.2011.04.013

    Article  Google Scholar 

Download references

Acknowledgements

It is my pleasure to acknowledge and thank my supervisor for his technical guidance and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\Gamma_{i} \, = \,1 - \left( {\frac{2}{\pi }\sqrt {1 - e_{ui} } - \frac{2}{\pi } + 1} \right)^{2}$$
(29)

Statistical parameters:

$$R^{2} = 1 - \left( {\frac{{\sum\nolimits_{i = 1}^{n} {\left( {d_{i} - y_{i} } \right)^{2} } }}{{\sum\nolimits_{i = 1}^{n} {\left( {d_{i} - d_{mean} } \right)^{2} } }}} \right)$$
(30)
$${\text{Adj}}.R^{2} = 1 - \left\{ {\frac{{\left( {n - 1} \right)}}{{\left( {n - p - 1} \right)}}\left( {1 - R^{2} } \right)} \right\}$$
(31)
$${\text{WMAPE}} = \frac{{\sum\nolimits_{i = 1}^{n} {\left| {\frac{{\left( {d_{i} - y_{i} } \right)}}{{d_{i} }}} \right|\, \times d_{i} } }}{{\sum\nolimits_{i = 1}^{n} {d_{i} } }}$$
(32)
$${\text{NASH}} = \,1 - \frac{{\sum\nolimits_{i = 1}^{n} {\left( {y_{i} - \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y}_{i} } \right)^{2} } }}{{\sum\nolimits_{i = 1}^{n} {\left( {y_{i} - y_{{{\text{mean}}}} } \right)^{2} } }}$$
(33)
$${\text{RMSE}} = \sqrt {\frac{1}{n}\sum\nolimits_{i = 1}^{n} {\left( {d_{i} - y_{i} } \right)^{2} } }$$
(34)
$${\text{VAF}} = \left( {1 - \frac{{{\text{var}} \left( {d_{i} - y_{i} } \right)}}{{{\text{var}} \left( {d_{i} } \right)}}} \right) \times 100$$
(35)
$${\text{PI}} = \,{\text{Adj}}.R^{2} + \left( {0.01 \times {\text{VAF}}} \right) - {\text{RMSE}}$$
(36)
$${\text{RSR}} = \frac{{{\text{RMSE}}}}{{\sqrt {\frac{1}{n}\sum\nolimits_{i = 1}^{n} {\left( {d_{i} - d_{{{\text{mean}}}} } \right)^{2} } } }}$$
(37)
$$WI = 1 - \left[ {\frac{{\sum\nolimits_{i = 1}^{n} {\left( {d_{i} - y_{i} } \right)^{2} } }}{{\sum\nolimits_{i = 1}^{n} {\left\{ {\left| {\left( {y_{i} - d_{{{\text{mean}}}} } \right)} \right| + \left| {\left( {d_{i} - d_{{{\text{mean}}}} } \right)} \right|} \right\}^{2} } }}} \right]$$
(38)
$${\text{MAE}} = \frac{1}{n}\sum\nolimits_{i = 1}^{n} {\left| {\left( {y_{i} - d_{i} } \right)} \right|}$$
(39)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumar, A., Kumar, S. et al. Bending behaviour of steel–concrete composite beam with partial shear interface using MCS and ANN. Acta Mech 235, 4451–4471 (2024). https://doi.org/10.1007/s00707-024-03949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03949-4

Navigation