Log in

Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the bending deformation, free vibration and forced vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interfaces are investigated. The generalized linear spring layer model is adopted to simulate the interface bonding defects caused by the slip or debonding of quasicrystal materials due to actual production or interlayer aging. The imperfect interface transfer matrix is established for one-dimensional hexagonal quasicrystal layered plates and the analytical solutions of phonon displacements, phonon stresses, phason displacements and phason stresses for static bending, the natural frequency for free vibration, and the displacements of phonon and phason fields for forced vibration under a harmonic excitation are then derived by the pseudo-Stroh formalism. Numerical examples are provided to analyze the influence of the stacking sequence and the imperfect interface parameter of two sandwich plates composed of crystal and quasicrystal materials on the bending deformation and vibrational response of layered quasicrystal composite plates. Furthermore, the presented three-dimensional plate model is applied to quasicrystal-coated aluminium-based composites in engineering practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fan, T.Y.: Mathematical theory of elasticity and defects of quasicrystals. Adv Mech 30(2), 161–174 (2000). https://doi.org/10.3321/j.issn:1000-0992.2000.02.001(inChinese)

    Article  Google Scholar 

  2. Fan, T.Y.: Mathematical theory of elasticity of quasicrystals and its applications. Science Press. (2011)

  3. Stadnik, Z.M.: Physical Properties of Quasicrystals. Springer, Berlin Heidelberg (1999)

    Book  Google Scholar 

  4. Guo, X., Chen, J., Yu, H., Liao, H., Coddet, C.: A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surf. Coat. Technol. 268, 94–98 (2015). https://doi.org/10.1016/j.surfcoat.2014.05.062

    Article  Google Scholar 

  5. Zhang, J.S., Pei, L.X., Du, H.W., Liang, W., Xu, C.X., Lu, B.F.: Effect of Mg-based spherical quasicrystals on microstructure and mechanical properties of AZ91 alloys. J. Alloy. Compd. 453(1), 309–315 (2006)

    Google Scholar 

  6. Louzguine-Luzgin, D.V., Inoue, A.: Formation and properties of quasicrystals. Annu. Rev. Mater. Res. 38, 403–423 (2008)

    Article  Google Scholar 

  7. Duguet, T., Ledieu, J., Dubois, J.M., Fournée, V.: Surface alloys as interfacial layers between quasicrystalline and periodic materials. Journal of Physics: Condensed Matter. 20(31) (2008). Doi: https://doi.org/10.1088/0953-8984/20/31/314009

  8. Chang, S.Y., Chen, B.J., Hsiao, Y.T., Wang, D.S., et al.: Preparation and nanoscopic plastic deformation of toughened Al-Cu-Fe-based quasicrystal/vanadium multilayered coatings. Mater. Chem. Phys. 213, 277–284 (2018)

    Article  Google Scholar 

  9. Ali, F., Scudino, S., Anwar, M.S., Shahid, R.N., et al.: Al-based metal matrix composites reinforced with Al–Cu–Fe quasicrystalline particles: Strengthening by interfacial reaction. J. Alloy. Compd. 607, 274279 (2014). https://doi.org/10.1016/j.jallcom.2014.04.086

    Article  Google Scholar 

  10. Wei, D., He, Z.: Multilayered sandwich-like architecture containing large-scale faceted Al–Cu–Fe quasicrystal grains. Mater. Charact. 111, 154–161 (2016). https://doi.org/10.1016/j.matchar.2015.11.027

    Article  Google Scholar 

  11. Yang, L.Z., Gao, Y., Pan, E., Waksmanski, N.: An exact solution for a multilayered two-dimensional decagonal quasicrystal plate. Int. J. Solids Struct. 51(9), 1737–1749 (2014)

    Article  Google Scholar 

  12. Yang, L.Z., Gao, Y., Pan, E., Waksmanski, N.: An exact closed-form solution for a multilayered one-dimensional orthorhombic quasicrystal plate. Acta Mech. 226(11), 3611–3621 (2015)

    Article  MathSciNet  Google Scholar 

  13. Waksmanski, N., Pan, E., Yang, L.Z., Gao, Y.: Free vibration of a multilayered one-dimensional quasi-crystal plate. Journal of Vibration and Acoustics.136(4) (2014)

  14. Pan, E., Waksmanski, N.: Nonlocal analytical solutions for multilayered one-dimensional quasicrystal nanoplates. Journal of Vibration and Acoustics. 139(2) (2017)

  15. Li, X.F., Guo, J.H., Sun, T.Y.: Bending deformation of multilayered one-dimensional quasicrystal nanoplates based on the modified couple stress theory. Acta Mech. Solida Sin. 32(6), 785–802 (2019). https://doi.org/10.1007/s10338-019-00120-8

    Article  Google Scholar 

  16. Guo, J.H., Zhang, M. Chen, W.Q., Zhang, X.Y.: Free and forced vibration of layered one-dimensional quasicrystal nanoplates with modified couple-stresseffect. Science China (Physics, Mechanics and Astronomy). 63(07), 124–125 (2020). Doi: https://doi.org/10.1007/s11433-020-1547-3

  17. Zhang, L., Guo, J.H., **ng, Y.M.: Bending analysis of functionally graded one-dimensional hexagonal piezoelectric quasicrystal multilayered simply supported nanoplates based on nonlocal strain gradient theory. Acta Mech. Solida Sin. 34(2), 15 (2021)

    Article  Google Scholar 

  18. Sun, T.Y., Guo, J.H.: Free vibration and bending of one-dimensional quasicrystal layered composite beams by using the state space and differential quadrature approach. Acta Mech. (2022). https://doi.org/10.1007/s00707-022-03270-y

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheng, Z.Q., Jemah, A.K., Williams, F.W.: Theory for multilayered anisotropic plates with weakened interfaces. J. Appl. Mech. 63, 1019–1026 (1996). https://doi.org/10.1115/1.2787221

    Article  MATH  Google Scholar 

  20. Cheng, Z.Q., He, L.H., Kitipornchai, S.: Influence of imperfect interfaces on bending and vibration of laminated composite shells. Int. J. Solids Struct. 37(15), 2127–2150 (2000)

    Article  Google Scholar 

  21. Fan, H., Sze, K.Y.: A micro-mechanics model for imperfect interface in dielectric materials. Mechanics of Materials. 33(6), 363–370 (2001). Doi: https://doi.org/10.1016/S0167-6636(01)00053-9

  22. Bui, V.: Imperfect interlaminar interfaces in laminated composites: bending, buckling and transient reponses. Compos. Sci. Technol. 59(15), 2269–2277 (1999). https://doi.org/10.1016/S0266-3538(99)00081-0

    Article  Google Scholar 

  23. Chen, W.Q., Cai, J.B., Ye, G.R.: Exact solutions of cross-ply laminates with bonding imperfections. AIAA J. 41(11), 2244–2250 (2003)

    Article  Google Scholar 

  24. Chen, W.Q., Kang, Y.L.: Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method. Compos. Struct. 64(3/4), 275–283 (2004)

    Article  Google Scholar 

  25. Wang, X., Pan, E.: Exact solutions for simply supported and multilayered piezothermoelastic plates with imperfect interfaces. Open Mech J. 1(1), 1–10 (2007)

    Article  Google Scholar 

  26. Chen, W.Q., Zhou, Y.Y., Lü, C.F., Ding, H.J.: Bending of multiferroic laminated rectangular plates with imperfect interlaminar bonding. Eur. J Mech A Solids 28(4), 720–727 (2009). https://doi.org/10.1016/j.euromechsol.2009.02.008

    Article  MATH  Google Scholar 

  27. Kuo, H.Y., Huang, C.S., Pan, E.: Effect of imperfect interfaces on the field response of multilayered magneto-electro-elastic composites under surface loading. Smart Materials and Structures. 28(11), 115006 (2019)

  28. Vattré, A., Pan, E.: Thermoelasticity of multilayered plates with imperfect interfaces. International Journal of Engineering Science. 158 (2021)

  29. López, J.C., Realpozo, R.A., Rodríguez-Ramos, J., Quintero, R.H.: Behavior of piezoelectric layered composites with mechanical and electrical non-uniform imperfect contacts. Meccanica 55(1), 125–138 (2020)

    Article  MathSciNet  Google Scholar 

  30. Li, J.P., Zhang, L.: High-precision calculation of electromagnetic scattering by the Burton-Miller type regularized method of moments. Eng. Anal. Boundary Elem. 133, 177–184 (2021)

    Article  MathSciNet  Google Scholar 

  31. Li, J.P., Gu, Y., Qin, Q.H., Zhang, L.: The rapid assessment for three-dimensional potential model of large-scale particle system by a modified multilevel fast multipole algorithm. Computers and Mathematics with Applications. 89 (2021)

  32. Li, J.P., Zhang, L., Qin, Q.H.: A regularized method of moments for three-dimensional time-harmonic electromagnetic scattering. Appl. Math. Lett. 112, 106746 (2021)

    Article  MathSciNet  Google Scholar 

  33. Cheng, Z.Q., Kennedy, D., Williams, F.W.: Effect of Interfacial imperfection on buckling and bending behavior of composite laminates. AIAA J. 34(12), 2590–2595 (1996). https://doi.org/10.2514/3.13443

    Article  MATH  Google Scholar 

  34. Benveniste, Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708734 (2006). https://doi.org/10.1016/j.jmps.2005.10.009

    Article  MathSciNet  MATH  Google Scholar 

  35. Benveniste, Y.: Exact results for the local fields and the effective moduli of fibrous composites with thickly coated fibers. Journal of the Mechanics and Physics of Solids. 71(nov.), 219–238 (2014). Doi: https://doi.org/10.1016/j.jmps.2014.07.005

  36. Chen, T., Chiu, M.S., Weng, C.N.: Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J. Appl. Phys. 100(7), 65 (2006). https://doi.org/10.1063/1.2356094

    Article  Google Scholar 

  37. Wang, Z., Zhu, J., **, X.Y., Chen, W.Q., Zhang, C.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids 65, 138–156 (2014)

    Article  MathSciNet  Google Scholar 

  38. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. 68(4), 608–618 (2001)

    Article  Google Scholar 

  39. Xu, P.C., Datta, S.K.: Guided waves in a bonded plate: A parametric study. Journal of Applied Physics. 67(11) (1990)

  40. Liu, H., Pan, E., Cai, Y.C.: General surface loading over layered transversely isotropic pavements with imperfect interfaces. Advances in Engineering Software. 115 (2018)

  41. Liu, H., Pan, E.: Time-harmonic loading over transversely isotropic and layered elastic half-spaces with imperfect interfaces. Soil Dyn. Earthq. Eng. 107, 35–47 (2018)

    Article  Google Scholar 

  42. Fan, T.Y.: Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering 05(4), 407–448 (2013). https://doi.org/10.4236/eng.2013.54053

    Article  Google Scholar 

  43. Stroh, A.N.: Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3(30), 625–646 (1958)

    Article  MathSciNet  Google Scholar 

  44. Dubois, J.M., Kang, S.S., Massiani, Y.: Application of quasicrystalline alloys to surface coating of soft metals. J. Non-Cryst. Solids 153–154, 443–445 (1993)

    Article  Google Scholar 

  45. Kenzari, S., Bonina, D., Dubois, J., Fournée, V.: Quasicrystal–polymer composites for selective laser sintering technology. Mater. Des. 35(Mar.), 691–695 (2012)

  46. Pan, E., Chen, W.Q.: Static Green's Functions in Anisotropic Media. Cambridge University Press, Cambridge (2015)

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Nos. 12072166 and 11862021), Program for Science and Technology of Inner Mongolia Autonomous Region (No. 2021GG0254), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2020MS01006) and the Independent Research Key Program of Center for Applied Mathematics of Inner Mongolia (ZZYJZD2022002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. H. Guo or X. Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H.T., Guo, J.H., Jiang, X. et al. Bending and vibration of one-dimensional hexagonal quasicrystal layered plates with imperfect interface. Acta Mech 233, 4029–4046 (2022). https://doi.org/10.1007/s00707-022-03318-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03318-z

Navigation