Log in

Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, micro-damage mechanics (MIDM) and macro-damage mechanics (MADM) are employed to study the progressive damage in composite laminates. Firstly, a novel method for progressive damage modeling of composite laminates is proposed based on MADM rules. In the MADM method, a new exponential behavior for the softening regime of damaged plies is proposed from comprehensive experimental tests on glass/epoxy composite laminates with a variety of the stacking sequence. Then, a MIDM model is employed to study the mechanical behavior of composite laminates with micro-cracks. The effective elastic moduli and Poisson’s ratio in damaged composite laminates containing a large number of micro-cracks are determined by utilizing variational methods. Finally, the proposed exponential behavior of damaged plies based on MADM rules is verified by utilizing a MIDM model. The resulting coincidence of MADM and MIDM proves that the proposed method can accurately simulate the behavior of damaged plies in glass/epoxy composite laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, H., Guo, L., Liu, G., et al.: Progressive damage investigation of 2.5 D woven composites under quasi-static tension. Acta Mech. (2018). https://doi.org/10.1007/s00707-017-2024-z

  2. Meraghni, F., Desrumaux, F., Benzeggagh, M.L.: Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Compos. Sci. Technol. 62, 2087–2097 (2002)

    Article  Google Scholar 

  3. Yang, B., Kim, B., Lee, H.-K.: Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites. Acta Mech. 223, 1307–1321 (2012)

    Article  MathSciNet  Google Scholar 

  4. Singh, C.V., Talreja, R.: Analysis of multiple off-axis ply cracks in composite laminates. Int. J. Solids Struct. 45, 4574–4589 (2008)

    Article  Google Scholar 

  5. Gupta, A., Patel, B., Nath, Y.: Nonlinear static analysis of composite laminated plates with evolving damage. Acta Mech. 224, 1285–1298 (2013)

    Article  MathSciNet  Google Scholar 

  6. Feng, X.-Q., Yu, S.-W.: Damage micromechanics for constitutive relations and failure of microcracked quasi-brittle materials. Int. J. Damage Mech. 19, 911–948 (2010)

    Article  Google Scholar 

  7. Lezgy-Nazargah, M.: Assessment of refined high-order global-local theory for progressive failure analysis of laminated composite beams. Acta Mech. 228, 1923–1940 (2017)

    Article  MathSciNet  Google Scholar 

  8. Meraghni, F., Benzeggagh, M.L.: Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos. Sci. Technol. 55, 171–186 (1995)

    Article  Google Scholar 

  9. Meraghni, F., Blakeman, C.J., Benzeggagh, M.L.: Effect of interfacial decohesion on stiffness reduction in a random discontinuous-fibre composite containing matrix microcracks. Compos. Sci. Technol. 56, 541–555 (1996)

    Article  Google Scholar 

  10. Voyiadjis, G.Z., Taqieddin, Z.N., Kattan, P.I.: Micromechanical approach to damage mechanics of composite materials with fabric tensors. Compos. Part B Eng. 38, 862–877 (2007)

    Article  Google Scholar 

  11. Singh, C.V., Talreja, R.: Evolution of ply cracks in multidirectional composite laminates. Int. J. Solids Struct. 47, 1338–1349 (2010)

    Article  Google Scholar 

  12. Nobeen, N.S., Zhong, Y., Francis, B.A.P., Ji, X., Chia, E.S.M., Joshi, S.C., Chen, Z.: Constituent materials micro-damage modeling in predicting progressive failure of braided fiber composites. Compos. Struct. 145, 194–202 (2016)

    Article  Google Scholar 

  13. Praud, F., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F.: Hybrid micromechanical-phenomenological modelling of anisotropic damage and anelasticity induced by micro-cracks in unidirectional composites. Compos. Struct. 182, 223–236 (2017)

    Article  Google Scholar 

  14. Kachanov, L.: On the time to failure under creep conditions, Izv. AN SSSR Otd. Tekhn. Nauk 8, 8 (1958)

    Google Scholar 

  15. Matzenmiller, A., Lubliner, J., Taylor, R.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)

    Article  Google Scholar 

  16. Jordan, J.B., Naito, C.J., Haque, B.Z.G.: Progressive damage modeling of plain weave E-glass/phenolic composites. Compos. Part B Eng. 61, 315–323 (2014)

    Article  Google Scholar 

  17. Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 38, 2333–2341 (2007)

    Article  Google Scholar 

  18. Wang, L., Zheng, C., Luo, H., Wei, S., Wei, Z.: Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos. Struct. 134, 475–482 (2015)

    Article  Google Scholar 

  19. Barbero, E., Cosso, F., Roman, R., Weadon, T.: Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Compos. Part B Eng. 46, 211–220 (2013)

    Article  Google Scholar 

  20. Rafiee, R., Torabi, M.A.: Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 185, 573–583 (2018)

    Article  Google Scholar 

  21. Rafiee, R., Torabi, M.A., Maleki, S.: Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation. Polym. Test. 67, 322–330 (2018)

    Article  Google Scholar 

  22. Bogenfeld, R., Kreikemeier, J.: A tensorial based progressive damage model for fiber reinforced polymers. Compos. Struct. 168, 608–618 (2017)

    Article  Google Scholar 

  23. Kotelnikova-Weiler, N., Baverel, O., Ducoulombier, N., Caron, J.-F.: Progressive damage of a unidirectional composite with a viscoelastic matrix, observations and modelling. Compos. Struct. 188, 297–312 (2018)

    Article  Google Scholar 

  24. Tay, T., Liu, G., Yudhanto, A., Tan, V.: A micro–macro approach to modeling progressive damage in composite structures. Int. J. Damage Mech. 17, 5–28 (2008)

    Article  Google Scholar 

  25. Lee, C.-S., Kim, J.-H., Kim, S.-K., Ryu, D.-M., Lee, J.-M.: Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Compos. Struct. 121, 406–419 (2015)

    Article  Google Scholar 

  26. Luo, H., Yan, Y., Zhang, T., He, Z., Wang, S.: Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic impact. Polym. Test. 63, 12–24 (2017)

    Article  Google Scholar 

  27. Maimí, P., Camanho, P.P., Mayugo, J., Dávila, C.: A continuum damage model for composite laminates: part I–constitutive model. Mech. Mater. 39, 897–908 (2007)

    Article  Google Scholar 

  28. Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: part II—computational implementation and validation. Mech. Mater. 39, 909–919 (2007)

    Article  Google Scholar 

  29. Ridha, M., Tan, V.B.C., Tay, T.E.: Traction-separation laws for progressive failure of bonded scarf repair of composite panel. Compos. Struct. 93, 1239–1245 (2011)

    Article  Google Scholar 

  30. Varna, J., Berglund, L.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J Compos Technol. Res. 13(2), 97–106 (1991)

    Article  Google Scholar 

  31. Varna, J., Berglund, A.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)

    Article  Google Scholar 

  32. Aveston, J., Kelly, A.: Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352–362 (1973)

    Article  Google Scholar 

  33. Voyiadjis, G.Z., Kattan, P.I., Taqieddin, Z.N.: Continuum approach to damage mechanics of composite materials with fabric tensors. Int. J. Damage Mech. 16, 301–329 (2007)

    Article  Google Scholar 

  34. Kundalwal, S., Ray, M.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225, 2621–2643 (2014)

    Article  MathSciNet  Google Scholar 

  35. Hashin, Z.: Analysis of cracked laminates: a variational approach. Mech. Mater. 4, 121–136 (1985)

    Article  Google Scholar 

  36. Tong, J., Guild, F.J., Ogin, S.L., Smith, P.A.: On matrix crack growth in quasi-isotropic laminates—I. Exp. Investig. Compos. Sci. Technol. 57, 1527–1535 (1997)

    Article  Google Scholar 

  37. Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  38. Kaw, A.K.: Mechanics of Composite Materials. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  39. Christensen, R.M.: Mechanics of Composite Materials. Courier Corporation, New York (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of University of Tehran for this research under Grant number 28686/01/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Fakoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakoor, M., Ghoreishi, S.M.N. Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates. Acta Mech 230, 225–241 (2019). https://doi.org/10.1007/s00707-018-2313-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2313-1

Navigation