Log in

Computational image analysis of the baseplate-tail complex of O1 ElTor vibriophage M4

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We performed an in-depth computational image analysis of the baseplate-tail complex of the M4 vibriophage and identified seven major densities in its baseplate, which notably share structural similarities with baseplate modules of a number of other bacteriophages belonging to different species. Employing computational analysis, we explained the helical organization of the sheath protein, wrap** the tail tube. Based on the results obtained in this work along with the proteomics information published previously, we are able to decipher the plausible roles assigned to the different components of the M4 baseplate during infection of the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Sjölund-Karlsson M, Reimer A, Folster JP, Walker M, Dahourou GA, Batra DG, Martin I, Joyce K, Parsons MB, Boncy J, Whichard JM, Gilmour MW (2011) Drug resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis J 17:22. https://doi.org/10.3201/eid1711.110720

    Article  CAS  Google Scholar 

  2. López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398. https://doi.org/10.1101/cshperspect.a000398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  4. Das S, Dutta M, Sen A, Ghosh AN (2019) Structural analysis and proteomics studies on the Myoviridae vibriophage M4. Arch Virol 164(2):523–534. https://doi.org/10.1007/s00705-018-4100-7

    Article  CAS  PubMed  Google Scholar 

  5. Veesler D, Cambillau C (2011) A common evolutionary origin for tailed-bacteriophage functional modules and bacterial machineries. Microbiol Mol Biol Rev. 75(3):423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157(1):38–46

    Article  CAS  PubMed  Google Scholar 

  7. Heymann JB, Belnap DM (2007) Bsoft: image processing and molecular modeling for electron microscopy. J Struct Biol 157(1):3–18

    Article  CAS  PubMed  Google Scholar 

  8. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  9. Aksyuk AA, Rossmann MG (2011) Bacteriophage assembly. Viruses. 3(3):172–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwarzer D, Buettner FFR, Browing C et al (2012) A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis. J Virol 86(19):10384–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Effantin G, Hamasaki R, Kawasaki T et al (2013) Cryo-electron microscopy three-dimensional structure of the jumbo phage ΦRSL1 infecting the phytopathogen Ralstonia solanacearum. Structure 21(2):298–305

    Article  CAS  PubMed  Google Scholar 

  12. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchencho VA, Aksyuk AA, Kanamaru S, Rossmann MG (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7:355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng W, Wang F, Taylor NMI, Guerrero-Ferreira RC, Leiman PG, Egelman EH (2017) Refined cryo-EM structure of the T4 tail tube: exploring the lowest dose limit. Structure 25(9):1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sciara G, Bebeacua C, Bron P et al (2010) Structure of lactococcal phage p2 baseplate and its mechanism of activation. PNAS 107(15):6852–6857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nováček J, Šiborová M, Benešík M, Pantůček R, Doškař J, Plevka P (2016) Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. PNAS 113(33):9351–9356

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM et al (2016) Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 533(7603):346–352

    Article  CAS  PubMed  Google Scholar 

  17. Zheng W, Wang F, Taylor NMI et al (2017) Refined cryo-EM structure of the T4 tail tube: exploring the lowest dose limit. Structure 25(9):1436–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge P, Scholl D, Leiman PG et al (2015) Atomic structures of a bactericidal contractile nanotube in its pre- and post-contraction states. Nat Struct Mol Biol 22:377–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bebeacua C, Lai L, Vegge CK, Brøndsted L, van Heel M, Veesler D, Cambillau C (2013) Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. J Virol 87(2):1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sen A, Ghosh AN (2017) Visualizing a Vibrio cholerae O1 El Tor ty** bacteriophage belonging to the Myoviridae group and the packaging of its genomic ends inside the phage capsid. J Biomol Struct Dyn 17:1–14

    Google Scholar 

Download references

Acknowledgements

The authors declare no conflicts of interest. No animal or human experiments were involved in this work. The authors thank Dr. Moumita Dutta for valuable input. AS and ANG designed the project. AS carried out the computational image analysis. SD carried out proteomics studies. AS and ANG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anindito Sen or Amar N. Ghosh.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 38136 kb)

Supplementary material 2 (PDF 12255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, A., Das, S. & Ghosh, A.N. Computational image analysis of the baseplate-tail complex of O1 ElTor vibriophage M4. Arch Virol 165, 2641–2646 (2020). https://doi.org/10.1007/s00705-020-04765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04765-6

Navigation