Log in

Optimized nested PCR enhances biological diagnosis and phylogenetic analysis of human parvovirus B19 infections

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Diagnosis and epidemiological analysis of human parvovirus B19 (hB19V) infections are essential for disease management in severely ill patients. This study aimed to evaluate the performance of an optimized NS1-VP1u nested PCR for detection and sequencing of viruses in clinical samples using 224 clinical and five reference samples. PCR sensitivity, specificity, and positive and negative predictive values were perfect (100%). While phylogenetic analysis of a 615 bp-long fragment demonstrated that the viruses in all of the samples belonged to genotype 1, this study confirmed that this optimized PCR could detect all known hB19V with high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

References

  1. Servey JT, Reamy BV, Hodge J (2007) Clinical presentations of parvovirus B19 infection. Am Fam Physician 75:373–376

    PubMed  Google Scholar 

  2. Kaufmann B, Simpson AA, Rossmann MG (2004) The structure of human parvovirus B19. Proc Natl Acad Sci USA 101:11628–11633

    Article  CAS  Google Scholar 

  3. Kahn JS, Kesebir D, Cotmore SF et al (2008) Seroepidemiology of human bocavirus defined using recombinant virus-like particles. J Infect Dis 198:41–50

    Article  CAS  Google Scholar 

  4. Momoeda M, Wong S, Kawase M et al (1994) A putative nucleoside triphosphate-binding domain in the nonstructural protein of B19 parvovirus is required for cytotoxicity. J Virol 68:8443–8446

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Raab U, Beckenlehner K, Lowin T et al (2002) NS1 protein of parvovirus B19 interacts directly with DNA sequences of the p6 promoter and with the cellular transcription factors Sp1/Sp3. Virology 293:86–93

    Article  CAS  Google Scholar 

  6. Vassias I, Hazan U, Michel Y et al (1998) Regulation of human B19 parvovirus promoter expression by hGABP (E4TF1) transcription factor. J Biol Chem 273:8287–8293

    Article  CAS  Google Scholar 

  7. Norbeck O, Isa A, Pöhlmann C et al (2005) Sustained CD8+ T-Cell responses induced after acute parvovirus B19 infection in humans. J Virol 79:12117–12121

    Article  CAS  Google Scholar 

  8. Jia J, Ma Y, Zhao X et al (2016) Existence of various human parvovirus B19 genotypes in Chinese plasma pools: genotype 1, genotype 3, putative intergenotypic recombinant variants and new genotypes. Virol J 13:155

    Article  Google Scholar 

  9. Anderson MJ, Higgins PG, Davis LR et al (1985) Experimental parvoviral infection in humans. J Infect Dis 152:257–265

    Article  CAS  Google Scholar 

  10. Azzi A, Morfini M, Mannucci PM (1999) The transfusion-associated transmission of parvovirus B19. Transfus Med Rev 13:194–204

    Article  CAS  Google Scholar 

  11. Brodin-Sartorius A, Mekki Y, Pastural M et al (2011) Severe transfusion-transmitted parvovirus B19 infection in a naive immunocompromised patient. Transpl Infect Dis 13:97–98

    Article  CAS  Google Scholar 

  12. Lindblom A, Isa A, Norbeck O et al (2005) Slow clearance of human parvovirus B19 viremia following acute infection. Clin Infect Dis 41:1201–1203

    Article  Google Scholar 

  13. Young N, Harrison M, Moore J et al (1984) Direct demonstration of the human parvovirus in erythroid progenitor cells infected in vitro. J Clin Invest 74:2024–2032

    Article  CAS  Google Scholar 

  14. Serjeant GR, Topley JM, Mason K et al (1981) Outbreak of aplastic crises in sickle cell anaemia associated with parvovirus-like agent. Lancet Lond Engl 2:595–597

    Article  CAS  Google Scholar 

  15. Luzzi GA, Kurtz JB, Chapel H (1985) Human parvovirus arthropathy and rheumatoid factor. Lancet Lond Engl 1:1218

    Article  CAS  Google Scholar 

  16. Anderson LJ (1987) Role of parvovirus B19 in human disease. Pediatr Infect Dis J 6:711–718

    Article  CAS  Google Scholar 

  17. Le Scanff J, Vighetto A, Mekki Y et al (2010) Acute ophthalmoparesis associated with human parvovirus B19 infection. Eur J Ophthalmol 20:802–804

    Article  Google Scholar 

  18. Modrow S, Dorsch S (2002) Antibody responses in parvovirus B19 infected patients. Pathol Biol (Paris) 50:326–331

    Article  CAS  Google Scholar 

  19. Zavattoni M, Paolucci S, Sarasini A et al (2016) Diagnostic and prognostic value of molecular and serological investigation of human parvovirus B19 infection during pregnancy. New Microbiol 39:181–185

    CAS  PubMed  Google Scholar 

  20. Servant A, Laperche S, Lallemand F et al (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76:9124–9134

    Article  CAS  Google Scholar 

  21. Simel DL, Samsa GP, Matchar DB (1991) Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol 44:763–770

    Article  CAS  Google Scholar 

  22. Hübschen JM, Mihneva Z, Mentis AF et al (2009) Phylogenetic analysis of human parvovirus B19 sequences from eleven different countries confirms the predominance of Genotype 1 and suggests the spread of Genotype 3b. J Clin Microbiol 47:3735–3738

    Article  Google Scholar 

  23. Lamont RF, Sobel JD, Vaisbuch E et al (2011) Parvovirus B19 infection in human pregnancy. BJOG Int J Obstet Gynaecol 118:175–186

    Article  CAS  Google Scholar 

  24. Coumau E, Peynet J, Harzic M et al (1996) Severe parvovirus B19 infection in an immunocompetent child with hemophilia A. Arch Pédiatrie Org 3:35–39

    Article  CAS  Google Scholar 

  25. Koppelman MHGM, Rood IGH, Fryer JF et al (2007) Parvovirus B19 genotypes 1 and 2 detection with real-time polymerase chain reaction assays. Vox Sang 93:208–215

    Article  CAS  Google Scholar 

  26. Koppelman MHGM, van Swieten P, Cuijpers HTM (2011) Real-time polymerase chain reaction detection of parvovirus B19 DNA in blood donations using a commercial and an in-house assay. Transfusion (Paris) 51:1346–1354

    Article  CAS  Google Scholar 

  27. Eid AJ, Brown RA, Patel R, Razonable RR (2006) Parvovirus B19 infection after transplantation: a review of 98 cases. Clin Infect Dis 43:40–48. https://doi.org/10.1086/504812

    Article  PubMed  Google Scholar 

  28. Crane J, Mundle W, Boucoiran I et al (2014) Parvovirus B19 infection in pregnancy. J Obstet Gynaecol Can 36:1107–1116

    Article  Google Scholar 

  29. Enders M, Weidner A, Enders G (2007) Current epidemiological aspects of human parvovirus B19 infection during pregnancy and childhood in the western part of Germany. Epidemiol Infect 135:563

    Article  CAS  Google Scholar 

  30. Fairley CK, Smoleniec JS, Caul OE, Miller E (1995) Observational study of effect of intrauterine transfusions on outcome of fetal hydrops after parvovirus B19 infection. Lancet 346:1335–1337

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank all the technicians of the molecular biology and virology laboratories for their help in these experiments, and Dr. Servant’s laboratory for help in providing the reference samples. The authors want to thank Ms. Viatte, Jeffrey Ashram, and Bruno Simon for valuable advice and correction.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MP and CL; data curation, VTG; formal analysis, MP, CL and DM; funding acquisition, BL; investigation, VTG and PG; methodology, MP, CL and JSC; project administration, GB; software, CL; supervision, YM; Writing – original draft, MP; writing – review & editing, MP.

Corresponding author

Correspondence to Maxime Pichon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichon, M., Labois, C., Tardy-Guidollet, V. et al. Optimized nested PCR enhances biological diagnosis and phylogenetic analysis of human parvovirus B19 infections. Arch Virol 164, 2775–2781 (2019). https://doi.org/10.1007/s00705-019-04368-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04368-w

Navigation