Log in

Codon usage bias of the phosphoprotein gene of spring viraemia of carp virus and high codon adaptation to the host

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In this study, we calculated the relative synonymous codon usage (RSCU) value and the effective number of codons (ENC) value to carry out principal component analysis (PCA) and correlation analysis of the codon usage pattern of the phosphoprotein gene (P gene) of spring viraemia of carp virus (SVCV). The synonymous codon usage pattern in P genes is geography-specific, based on PCA analysis. The high correlation between (G + C)1,2 % and (G + C)% suggests that mutational pressure rather than natural selection is the main factor that determines the codon usage and base components in P genes. At least 40 out of 59 synonymous codons are similarly selected in all functional genes within five complete SVCV genomes, and the hosts based on the RSCU data. These results not only provide insight into variations in the codon usage pattern of SVCV but also may help in understanding the processes governing the evolution of SVCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bulmer M (1988) Codon usage and intragenic position. J Theor Biol 133(1):67–71

    Article  CAS  PubMed  Google Scholar 

  2. Karlin S, Mrázek J (1996) What drives codon choices in human genes? J Mol Biol 262(4):459–472

    Article  CAS  PubMed  Google Scholar 

  3. Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene 276(1–2):89–99

    Article  CAS  PubMed  Google Scholar 

  4. Yadav MK, Swati D (2012) Comparative genome analysis of six malarial parasites using codon usage bias based tools. Bioinformation 8(24):1230–1239

    Article  PubMed Central  PubMed  Google Scholar 

  5. Sharp PM, Cowe E, Higgin DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens: a review of the considerable within-species diversity. Nucleic Acids Res 16(17):8207–8211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207(2):365–377

    Article  CAS  PubMed  Google Scholar 

  7. Wang M, Zhang J, Zhou JH, Chen HT, Ma LN, Ding YZ, Liu WQ, Gu YX, Zhao F, Liu YS (2011) Analysis of codon usage in type 1 and the new genotypes of duck hepatitis virus. Biosystems 106(1):45–50

    Article  CAS  PubMed  Google Scholar 

  8. Zhou JH, Zl Gao, Zhang J, Ding YZ, Stipkovits L, Szathmary S, Pejsak Z, Liu YS (2013) The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. Infect Genet Evol 14:105–110

    Article  CAS  PubMed  Google Scholar 

  9. Gu W, Zhou T, Ma J, Sun X, Lu Z (2004) Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales. Virus Res 101(2):155–161

    Article  CAS  PubMed  Google Scholar 

  10. Zhou JH, Gao ZL, Sun DJ, Ding YZ, Zhang J, Stipkovits L, Szathmary S, Pejsak Z, Liu YS (2013) A comparative analysis on the synonymous codon usage pattern in viral functional genes and their translational initiation region of ASFV. Virus Genes 46(2):271–279

    Article  CAS  PubMed  Google Scholar 

  11. Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Wang M, Zhang J (2010) Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus. Infect Genet Evol 10(6):797–803

    Article  CAS  PubMed  Google Scholar 

  12. Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62(5):551–563

    Article  CAS  PubMed  Google Scholar 

  13. Bai X, Xu JZ, Li L, Guo Z, Li J, Zhu YM (2004) Analysis of codon usage in potato and its application in the modification of t-PA gene. Yi Chuan 26(1):75–83

    CAS  PubMed  Google Scholar 

  14. Akashi H (1997) Codon bias evolution in Drosophila. Population genetics of mutation-selection drift. Gene 205(1–2):269–278

    Article  CAS  PubMed  Google Scholar 

  15. Pan T, Dutta C, Das J (1998) Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Gene 215(2):405–413

    Article  CAS  PubMed  Google Scholar 

  16. Wong EH, Smith DK, Rabadan R, Peiris M, Poon LL (2010) Codon usage bias and the evolution of influenza A viruses. Codon usage biases of influenza virus. BMC Evol Biol 10:253

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang M, Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Liu WQ, Gu YX, Zhang J (2011) Analysis of codon usage in Newcastle disease virus. Virus Genes 42(2):245–253

    Article  CAS  PubMed  Google Scholar 

  18. Zhou JH, Zhang J, Ding YZ, Chen HT, Ma LN, Liu YS (2010) Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems 101(1):20–28

    Article  CAS  PubMed  Google Scholar 

  19. Greenbaum BD, Levine AJ, Bhanot G, Rabadan R (2008) Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog 4(6):e1000079

    Article  PubMed Central  PubMed  Google Scholar 

  20. Cannarozzi G, Schraudolph NN, Faty M, VonRohr P, Friberg MT, Roth AC, Gonnet P, Gonnet G, Barral Y (2010) A role for codon order in translation dynamics. Cell 141(2):355–367

    Article  PubMed  Google Scholar 

  21. Cutter AD, Wasmuth JD, Blaxter ML (2006) The evolution of biased codon and amino acid usage in nematode genomes. Mol Biol Evol 23(12):2303–2315

    Article  CAS  PubMed  Google Scholar 

  22. Duret L (2002) Evolution of synonymous codon usage in metazoans. Curr Opin Genet Dev 12(6):640–649

    Article  CAS  PubMed  Google Scholar 

  23. Jorgensen PEV, Olesen NJ, Ahne W, Lorenzen N (1989) SVCV and PFRviruses: serological examination of 22 isolates indicates close relationship between the two fish rhabdoviruses. In: Ahne W, Kurstak E (eds) Viruses of lower vertebrates. Springer Verlag, Heidelberg, pp 349–366

    Chapter  Google Scholar 

  24. Teng Y, Liu H, Lv JQ, Fan WH, Zhang QY, Qin QW (2007) Characterization of complete genome sequence of the spring viraemia of carp virus isolated from common carp (Cyprinus carpio) in China. Arch Virol 152(8):1457–1465

    Article  CAS  PubMed  Google Scholar 

  25. Miller O, Fuller FJ, Gebreyes WA, Lewbart GA, Shchelkunov IS, Shivappa RB, Joiner C, Woolford G, Stone DM, Dixon PF, Raley ME, Levine JF (2007) Phylogenetic analysis of spring virema of carp virus reveals distinct subgroups with common origins for recent isolates in North America and the UK. Dis Aquat Org 76(3):193–204

    Article  CAS  PubMed  Google Scholar 

  26. Padhi A, Verghese B (2012) Molecular evolutionary and epidemiological dynamics of a highly pathogenic fish rhabdovirus, the spring viraemia of carp virus (SVCV). Vet Microbiol 156(1–2):54–63

    Article  CAS  PubMed  Google Scholar 

  27. Johansson T, Osttman-Myllyoja L, Hellstrom A, Martelius S, Olesen NJ, Bjorklund H (2002) A novel fish rhabdovirus from Sweden is closely related to the Finnish rhabdovirus 903/87. Virus Genes 25(2):127–138

    Article  CAS  PubMed  Google Scholar 

  28. Stone DM, Ahne W, Denham KL, Dixon PF, Liu CT, Sheppard AM, Taylor GR, Way K (2003) Nucleotide sequence analysis of the glycoprotein gene of putative spring viraemia of carp virus and pike fry rhabdovirus isolates reveals four genogroups. Dis Aquat Org 53(3):203–210

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Gao L, Shi X, Gu T, Jiang Y, Chen H (2004) Isolation of spring viraemia of carp virus from cultured koi (Cyprinus carpio koi) and common carp (Cyprinus carpio carpio) in P.R. China. Bull Eur Assoc Fish Pathol 24:194–202

    Google Scholar 

  30. Warg J, Dikkeboom AL, Goodwin AE, Snekvik K, Whitney J (2007) Comparison of multiple genes of spring viraemia of carp viruses isolated in the United States. Virus Genes 35(1):87–95

    Article  CAS  PubMed  Google Scholar 

  31. Garver KA, Dwilow AG, Richard J, Booth TF, Beniac DR, Souter BW (2007) First detection and confirmation of spring viraemia of carp virus in common carp, Cyprinus carpio L., from Hamilton Harbour, Lake Ontario, Canada. J Fish Dis 30(11):665–671

    Article  CAS  PubMed  Google Scholar 

  32. Sheppard AM, Le Deuff RM, Martin PD, Woolford G, Way K, Stone DM (2007) Genoty** spring viraemia of carp virus and other piscine vesiculo-like viruses using reverse hybridisation. Dis Aquat Org 76(2):163–168

    Article  CAS  PubMed  Google Scholar 

  33. Zhang NZ, Zhang LF, Jiang YN, Zhang T, **a C (2009) Molecular analysis of spring viraemia of carp virus in China: a fatal aquatic viral disease that might spread in East Asian. PloS One 4(7):e6337

    Article  PubMed Central  PubMed  Google Scholar 

  34. Shchelkunov IS, Skurat EK, Sivolotskaia VA, Sapotko KV, Shimko W (1989) Rhabdovirus anguilla in eels in the USSR and its pathogenicity for fish. Vopr Virusol 34(1):81–84

    CAS  PubMed  Google Scholar 

  35. Rowley H, Graham DA, Campbell S, Way K, Stone DM, Curran WL, Bryson DG (2001) Isolation and characterisation of rhabdovirus from wild common bream Abramis brama, roach Rutilus rutilus, farmed brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in Northern Ireland. Dis Aquat Org 48(1):7–15

    Article  CAS  PubMed  Google Scholar 

  36. Hoffmann B, Beer M, Schütze H, Mettenleiter TC (2005) Fish rhabdoviruses: molecular epidemiology and evolution. Curr Top Microbiol Immunol 292:81–117

    CAS  PubMed  Google Scholar 

  37. Basic A, Schachner O, Bilic I, Hess M (2009) Phylogenetic analysis of spring viraemia of carp virus isolates from Austria indicates the existence of at least two subgroups within genogroup Id. Dis Aquat Org 85(1):31–40

    Article  CAS  PubMed  Google Scholar 

  38. Padhi A, Verghese B (2008) Detecting positively selected codons in the glycoprotein of spring viraemia of carp virus (SVCV) isolates from the USA and China. J Fish Dis 31(10):785–791

    Article  CAS  PubMed  Google Scholar 

  39. Michely S, Toulza E, Subirana L, John U, Cognat V, Maréchal-Drouard L, Grimsley N, Moreau H, Piganeau G (2013) Evolution of codon usage in the smallest photosynthetic eukayotes and their giant viruses. Genome Biol Evol 5(5):848–859

    Article  PubMed Central  PubMed  Google Scholar 

  40. Sharp PM, Li WH (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14(19):7737–7749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Archetti M (2004) Codon usage bias and mutation constraints reduce the level of error minimization of the genetic code. J Mol Evol 59(2):258–266

    Article  CAS  PubMed  Google Scholar 

  42. Weygand-Durasevic I, Ibba M (2011) Cell biology. New roles for codon usage. Science 329(5998):1473–1474

    Article  Google Scholar 

  43. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83(11):3746–3750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92(1):1–7

    Article  CAS  PubMed  Google Scholar 

  45. Tao P, Dai L, Luo M, Tang F, Tien P, Pan Z (2009) Analysis of synonymous codon usage in classical swine fever virus. Virus Genes 38(1):104–112

    Article  CAS  PubMed  Google Scholar 

  46. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87(1):23–29

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Director Scientific Research Fund, Institute of Veterinary Medicine, GDAAS (2011SZJJ005), Guangzhou Agricultural Science Research Project (GZCQC1202FG04002-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Ke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Yp., Zhou, Zw., Liu, Zx. et al. Codon usage bias of the phosphoprotein gene of spring viraemia of carp virus and high codon adaptation to the host. Arch Virol 159, 1841–1847 (2014). https://doi.org/10.1007/s00705-014-2000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2000-z

Keywords

Navigation