Log in

Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Nicotiana tabacum (tobacco) is a natural allotetraploid that formed from two diploid progenitors (N. sylvestris—S-genome, N. tomentosiformis—T-genome) within past 0.2 million years. Previous classical studies have shown that its 35S rDNA has been largely homogenised towards T-genome-like homeologs. However, the degree of conversion at single nucleotide resolution remains unknown. Here, we analysed intragenomic variation of rDNA at high resolution in natural tobacco, synthetic tobacco and the progenitors employing genomic, molecular and cytogenetic methods. In synthetic tobacco, we identified 13 highly (≥10% units) polymorphic sites in the 18S-5.8S-26S coding region. In contrast, only a single polymorphic site was detected in natural tobacco, indicating that gene conversion has removed most of the polymorphisms over shallow evolutionary times. However, the non-coding 26S-18S intergenic spacer (IGS) was highly polymorphic in both natural (57 polymorphic sites) and synthetic tobacco (128 polymorphic sites). In natural tobacco, most (64%) IGS polymorphisms were inherited from the N. tomentosiformis progenitor, while 36% appeared de novo indicating rapid rates of sequence divergence of IGS. FISH revealed that the T-genome-like units (harbouring N. tomentosiformis-type IGS) occurred on all four loci in tobacco variety 095-55, including those loci derived from N. sylvestris progenitor, while the variety SR-1 retained 1–2 S-genome loci unconverted and transcriptionally silenced. We discuss potential caveats associated with experimental and in silico approaches used for determination of rDNA polymorphisms. We also hypothesise that polyploidy-associated gene conversion may eliminate mutated and non-functional genes that have accumulated in progenitor genomes, thereby contributing to success of polyploidy species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abou-Ellail M, Cooke R, Saez-Vasquez J (2011) Variations on a team: major and minor variants of Arabidopsis thaliana rDNA genes. Nucl Aust 2:294–299. doi:10.4161/nucl.2.4.16561

    Google Scholar 

  • Bennett MD, Leitch I (2012) Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at http://data.kew.org/cvalues/. Accessed 2 Feb 2017

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucl Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertier L, Leus L, D’Hondt L, de Cock A, Hofte M (2013) Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PLoS ONE 8:e85385. doi:10.1371/journal.pone.0085385

    Article  PubMed  PubMed Central  Google Scholar 

  • Borisjuk NV, Davidjuk YM, Kostishin SS, Miroshnichenco GP, Velasco R, Hemleben V, Volkov RA (1997) Structural analysis of rDNA in the genus Nicotiana. Pl Molec Biol 35:655–660. doi:10.1023/A:1005856618898

    Article  CAS  Google Scholar 

  • Borowska-Zuchowska N, Kwasniewski M, Hasterok R (2016) Cytomolecular analysis of ribosomal DNA evolution in a natural allotetraploid Brachypodium hybridum and its putative ancestors–dissecting complex repetitive structure of intergenic spacers. Front Pl Sci 7:1499. doi:10.3389/fpls.2016.01499

    Google Scholar 

  • Caperta AD, Neves N, Morais-Cecilio L, Malho R, Viegas W (2002) Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA loci. J Cell Sci 115:2839–2846

    CAS  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953. doi:10.1126/science.1253435

    Article  CAS  PubMed  Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson JJ, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann Bot (Oxford) 92:107–127. doi:10.1093/aob/mcg087

    Article  CAS  Google Scholar 

  • Chelomina GN, Rozhkovan KV, Voronova AN, Burundukova OL, Muzarok TI, Zhuravlev YN (2016) Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer). J Ginseng Res 40:176–184. doi:10.1016/j.jgr.2015.07.005

    Article  PubMed  Google Scholar 

  • Chen K, de Borne FD, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Pl J 80:669–682. doi:10.1111/tpj.12661

    Article  CAS  Google Scholar 

  • Clarskon J, Dodsworth S, Chase M (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Pl Syst Evol. doi:10.1007/s00606-017-1416-9

    Google Scholar 

  • Coutinho JP, Carvalho A, Martin A, Ribeiro T, Morais-Cecilio L, Lima-Brito J (2016) Oak ribosomal DNA: characterization by FISH and polymorphism assessed by IGS PCR-RFLP. Pl Syst Evol 302:527–544. doi:10.1007/s00606-016-1281-y

    Article  CAS  Google Scholar 

  • Cullis CA (1975) Ribosomal cistron number in Nicotiana species and derived haploids. Chromosoma 50:435–441. doi:10.1007/BF00327079

    Article  CAS  Google Scholar 

  • Dadejova M, Lim KY, Souckova-Skalicka K, Matyasek R, Grandbastien MA, Leitch A, Kovarik A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668. doi:10.1111/j.1469-8137.2007.02034.x

    Article  CAS  PubMed  Google Scholar 

  • Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117. doi:10.1038/299111a0

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85. doi:10.1111/j.1469-8137.2009.03118.x

    Article  PubMed  Google Scholar 

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genom 18:448. doi:10.1186/s12864-017-3791-6

    Article  CAS  Google Scholar 

  • Fehrer J, Krak K, Chrtek J Jr (2009) Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol Biol 9:239. doi:10.1186/1471-2148-9-239

    Article  PubMed  PubMed Central  Google Scholar 

  • Galian JA, Rosato M, Rossello JA (2014) Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions. Syst Biol 63:219–230. doi:10.1093/sysbio/syt101

    Article  PubMed  Google Scholar 

  • Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191. doi:10.1101/gr.5457707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge XH, Ding L, Li ZY (2013) Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. Pl Cell Rep 32:1661–1673. doi:10.1007/s00299-013-1475-5

    Article  CAS  Google Scholar 

  • Goecks J, Nekrutenko A, Taylor J, Team G (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible and transparent computational research in the life sciences. Genome Biol 11:R86. doi:10.1186/gb-2010-11-8-r86

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana, Chronica Botanica. Waltham, Massachusetts

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harpke D, Peterson A (2006) Non-concerted ITS evolution in Mammillaria (Cactaceae). Molec Phylogen Evol 41:579–593. doi:10.1016/j.ympev.2006.05.036

    Article  CAS  Google Scholar 

  • Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) The architecture of eukaryotic gene. Wiley, Weinheim, pp 371–384

    Google Scholar 

  • Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy, and genome size in plants. Pl Physiol 55:496–501. doi:10.1104/pp.55.3.496

    Article  CAS  Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Molec Gen Genet 240:159–169. doi:10.1007/BF00277053

    Article  CAS  PubMed  Google Scholar 

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82. doi:10.1016/j.ympev.2004.05.002

    Article  Google Scholar 

  • Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA (2004) Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Pl Molec Biol 56:439–463. doi:10.1007/s11103-004-4678-x

    Article  CAS  Google Scholar 

  • Komarova NY, Grimm GW, Hemleben V, Volkov RA (2008) Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota. Pl Syst Evol 276:59–71. doi:10.1007/s00606-008-0091-2

    Article  CAS  Google Scholar 

  • Kovarik A, Fajkus J, Koukalova B, Bezdek M (1996) Species-specific evolution of telomeric and rDNA repeats in the tobacco composite genome. Theor Appl Genet 8:1108–1111

    Article  Google Scholar 

  • Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–625. doi:10.1111/j.1095-8312.2004.00345.x

    Article  Google Scholar 

  • Kovarik A, Lim KY, Dadejová M, Matyasek R, Chase M, Knapp S, Clarkson J, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot (Oxford) 101:815–823. doi:10.1093/aob/mcn019

    Article  CAS  Google Scholar 

  • Ksiazczyk T, Kovarik A, Eber F, Huteau V, Khaitova L, Tesarikova Z, Coriton O, Chevre AM (2011) Immediate unidirectional epigenetic reprogramming of NORs occurs independently of rDNA rearrangements in synthetic and natural forms of a polyploid species Brassica napus. Chromosoma 120:557–571. doi:10.1007/s00412-011-0331-z

    Article  CAS  PubMed  Google Scholar 

  • Ksiazczyk T, Zwierzykowska E, Molik K, Taciak M, Krajewski P, Zwierzykowski Z (2015) Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 252:985–996. doi:10.1007/s00709-014-0734-9

    Article  PubMed  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483. doi:10.1126/science.1153585

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot (Oxford) 101:805–814. doi:10.1093/aob/mcm326

    Article  CAS  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP, Leitch AR (2000) Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161–172

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946. doi:10.1534/genetics.166.4.1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovařík A, Leitch A (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the Kostoff synthetic tobacco. Amer J Bot 93:875–883. doi:10.3732/ajb.93.6.875

    Article  CAS  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763. doi:10.1111/j.1469-8137.2007.02121.x

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:489–586. doi:10.2174/1389202023350255

    Article  CAS  Google Scholar 

  • Liu KD, Yang GP, Zhu SH, Zhang QF, Wang XM, Maroof MAS (1996) Extraordinarily polymorphic ribosomal DNA in wild and cultivated rice. Genome 39:1109–1116. doi:10.1139/g96-139

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Forrest LL, Bainard JD, Budke JM, Goffinet B (2013) Organellar genome, nuclear ribosomal DNA repeat unit, and microsatellites isolated from a small-scale of 454 GS FLX sequencing on two mosses. Molec Phylogen Evol 66:1089–1094. doi:10.1016/j.ympev.2012.12.006

    Article  CAS  Google Scholar 

  • Malinska H, Tate JA, Matyasek R, Leitch AR, Soltis DE, Soltis PS, Kovarik A (2010) Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae) allotetraploids. BMC Evol Biol 10:291. doi:10.1186/1471-2148-10-291

    Article  PubMed  PubMed Central  Google Scholar 

  • Matyasek R, Lim KY, Kovarik A, Leitch AR (2003) Ribosomal DNA evolution and gene conversion in Nicotiana rustica. Heredity 91:268–275. doi:10.1038/sj.hdy.6800333

    Article  CAS  PubMed  Google Scholar 

  • Matyasek R, Renny-Byfield S, Fulnecek J, Macas J, Grandbastien MA, Nichols R, Leitch A, Kovarik A (2012) Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids. BMC Genom 13:722. doi:10.1186/1471-2164-13-722

    Article  CAS  Google Scholar 

  • Matyášek R, Dobešová E, Húska D, Ježková I, Soltis PS, Soltis DE, Kovařík A (2016) Interpopulation hybridization generates meiotically stable rDNA epigenetic variants in allotetraploid Tragopogon mirus. Pl J 85:362–377. doi:10.1111/tpj.13110

    Article  Google Scholar 

  • Moscone EA, Matzke MA, Matzke AJ (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236. doi:10.1007/BF02528771

    Article  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annual Rev Genet 39:121–152. doi:10.1146/annurev.genet.39.073003.112240

    Article  CAS  Google Scholar 

  • Neves N, Delgado M, Silva M, Caperta A, Morais-Cecilio L, Viegas W (2005) Ribosomal DNA heterochromatin in plants. Cytogenet Genome Res 109:104–111. doi:10.1073/pnas.0409689102

    Article  CAS  PubMed  Google Scholar 

  • Nieto Feliner G, Rossello JA (2012) Concerted evolution of multigene families and homeologous recombination. In: Wendel JF (ed) Plant genome diversity, vol 1. Springer, Wien, pp 171–194

    Chapter  Google Scholar 

  • Noe L, Kucherov G (2005) YASS: enhancing the sensitivity of DNA similarity search. Nucl Acids Res 33:W540–W543. doi:10.1093/nar/gki478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186:135–147. doi:10.1111/j.1469-8137.2009.03140.x

    Article  CAS  PubMed  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245. doi:10.1073/pnas.0407258102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák P, Leitch AR (2011) Next generation sequencing reveals evidence of genome downsizing and elimination of paternally derived repetitive DNA sequences in tobacco. Molec Biol Evol 28:2843–2854. doi:10.1093/molbev/msr112

    Article  CAS  PubMed  Google Scholar 

  • Renny-Byfield S, Kovarik A, Chester M, Nichols RA, Macas J, Novak P, Leitch AR (2012) Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS ONE 7:e36963. doi:10.1371/journal.pone.0036963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renny-Byfield S, Gong L, Gallagher JP, Wendel JF (2015) Persistence of subgenomes in paleopolyploid cotton after 60 My of evolution. Molec Biol Evol 32:1063–1071. doi:10.1093/molbev/msv001

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359

    Article  CAS  PubMed  Google Scholar 

  • Sano Y, Sano R (1990) Variation of the intergenic spacer region of ribosomal DNA in cultivated and wild rice species. Genome 33:209–218

    CAS  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833. doi:10.1038/ncomms4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalicka K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomentosiformis genome donor of a synthetic, allotetraploid tobacco. New Phytol 166:291–303. doi:10.1111/j.1469-8137.2004.01297.x

    Article  CAS  PubMed  Google Scholar 

  • Sochorova J, Coriton O, Kuderova A, Lunerova J, Chevre AM, Kovarik A (2017) Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann Bot (Oxford) 119:13–26. doi:10.1093/aob/mcw187

    Article  Google Scholar 

  • Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17:1888–1897. doi:10.1101/gr.6376807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: next generation sequencing for plant systemtatics. Amer J Bot 99:349–364. doi:10.3732/ajb.1100335

    Article  CAS  Google Scholar 

  • Szostak JW, Wu R (1980) Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430

    Article  CAS  PubMed  Google Scholar 

  • Volkov R, Kostishin S, Ehrendorfer E, Schweizer D (1996) Molecular organization and evolution of the external transcribed rDNA spacer region in two diploid relatives of Nicotiana tabacum (Solanaceae). Pl Syst Evol 201:117–129. doi:10.1007/BF00989055

    Article  CAS  Google Scholar 

  • Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V (1999a) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molec Biol Evol 16:311–320

    Article  CAS  PubMed  Google Scholar 

  • Volkov RA, Bachmair A, Panchuk II, Kostyshyn SS, Schweizer D (1999b) 25S-18S rDNA intergenic spacer of Nicotiana sylvestris (Solanaceae): primary and secondary structure analysis. Pl Syst Evol 218:89–97. doi:10.1007/BF01087037

    Article  CAS  Google Scholar 

  • Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodivers (NHM Lond) 5:261–276. doi:10.1017/S1477200007002447

    Article  Google Scholar 

  • Volkov RA, Panchuk II, Borisjuk NV, Hosiawa-Baranska M, Maluszynska J, Hemleben V (2017) Evolutional dynamics of 45S and 5S ribosomal DNA in ancient allohexaploid Atropa belladonna. BMC Pl Biol 17:21. doi:10.1186/s12870-017-0978-6

    Article  Google Scholar 

  • Wang W, Ma L, Becher H, Garcia S, Kovarikova A, Leitch IJ, Leitch AR, Kovarik A (2016) Astonishing 35S rDNA diversity in the gymnosperm species Cycas revoluta Thunb. Chromosoma 125:683–699. doi:10.1007/s00412-015-0556-3

    Article  CAS  PubMed  Google Scholar 

  • Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140:137–150. doi:10.1159/000351727

    Article  CAS  PubMed  Google Scholar 

  • Weitemier K, Straub SC, Fishbein M, Liston A (2015) Intragenomic polymorphisms among high-copy loci: a genus-wide study of nuclear ribosomal DNA in Asclepias (Apocynaceae). PeerJ 3:e718. doi:10.7717/peerj.718

    Article  PubMed  PubMed Central  Google Scholar 

  • **ong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913. doi:10.1073/pnas.1014138108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes-coding for the alpha-chains of hemoglobin. Proc Natl Acad Sci USA 77:2158–2162. doi:10.1073/pnas.77.4.2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was funded by the Czech Science Foundation (P501/17/11642S and P506/16-02149J) and NERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kovařík.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Human or animal participants

The present research does not involve human or animal participants. All authors have approved the manuscript.

Additional information

Handling Editor: Miloslav Plohl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1.

Sequence assembly of full length rDNA units from the GenBank clones. These sequences were used as references to build NGS consensus. (PDF 174 kb)

Online Resource 2.

Sequence alignments of Nicotiana 35S rDNA (18S-ITS1-5.8S-ITS2-26S-IGS) reference and NGS consensus sequences. (a) A low resolution view. Coding regions and promoters are annotated with brown and red arrows, respectively. Regions of probes hybridisation are annotated with green arrows. Reference sequences used for haplotypic analysis and cDNA reads map** are in cyan blue. PCR amplicons used in RT-CAPS analysis (Fig. 5) are in violet. Polymorphic restriction sites are in dark blue. (b) Nucleotide level-resolution view. (PDF 9768 kb)

Online Resource 3.

Data sets. Sheet 1 – List of DNA polymorphisms in N. sylvestris units. The polymorphic sites included single-nucleotide substitutions (SNV), insertions (INS), deletions (DEL) and multi-nucleotide variations (MNV). Sheet 2 – List of DNA polymorphisms in N. tomentosiformis units, as in sheet 1. Sheet 3 - List of DNA polymorphisms in N. tabacum var. SR-1 units, as in sheet 1. Sheet 4 - List of DNA polymorphisms in synthetic tobacco line TR1-A, as in sheet 1. Sheet 5 - List of DNA polymorphisms in an electronic N. sylvestris and N. tomentosiformis hybrid, as in sheet 1. Sheet 6 – Pairwise comparisons of NGS consensus and GenBank clones. Sheet 7 – Lengths of rDNA units and subregions. Sheet 8 – Summary of SNPs in the IGS region. Sheet 9 - Haplotypic analysis of rDNA subregions. Sheet 10 – Comparison of rDNA alleles between N. tabacum and N. tomentosiformis. Sheet 11 – ITS1 amplicon sequencing – cDNA. Sheet 12 – ITS1 amplicon sequencing – gDNA. Sheet 13 – Summary of ITS1 amplicon sequencing. (XLSX 187 kb)

Online Resource 4.

Alignment of ITS1 consensus sequences from N. sylvestris (SYL58) and N. tomentosiformis (TOM58). (PDF 362 kb)

Online Resource 5.

Analysis of tandem repeats in the A-subregion of IGS in N. tabacum, N. tomentosiformis, N. sylvestris. (PDF 401 kb)

Online Resource 6.

Positions of restriction endonuclease recognition sites and regions of 26S probe hybridisation (rectangle) in rDNA units. (PDF 536 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Sequence assembly of full length rDNA units from the GenBank clones. These sequences were used as references to build NGS consensus.

Online Resource 2. Sequence alignments of Nicotiana 35S rDNA (18S-ITS1-5.8S-ITS2-26S-IGS) reference and NGS consensus sequences. (a) A low resolution view. Coding regions and promoters are annotated with brown and red arrows, respectively. Regions of probes hybridisation are annotated with green arrows. Reference sequences used for haplotypic analysis and cDNA reads map** are in cyan blue. PCR amplicons used in RT-CAPS analysis (Fig. 5) are in violet. Polymorphic restriction sites are in dark blue. (b) Nucleotide level-resolution view.

Online Resource 3. Data sets. Sheet 1 – List of DNA polymorphisms in Nicotiana sylvestris units. The polymorphic sites included single-nucleotide substitutions (SNV), insertions (INS), deletions (DEL) and multi-nucleotide variations (MNV). Sheet 2 – List of DNA polymorphisms in N. tomentosiformis units, as in sheet 1. Sheet 3 - List of DNA polymorphisms in N. tabacum var. SR-1 units, as in sheet 1. Sheet 4 - List of DNA polymorphisms in synthetic tobacco line TR1-A, as in sheet 1. Sheet 5 - List of DNA polymorphisms in an electronic N. sylvestris and N. tomentosiformis hybrid, as in sheet 1. Sheet 6 – Pairwise comparisons of NGS consensus and GenBank clones. Sheet 7 – Lengths of rDNA units and subregions. Sheet 8 – Summary of SNPs in the IGS region. Sheet 9 - Haplotypic analysis of rDNA subregions. Sheet 10 – Comparison of rDNA alleles between N. tabacum and N. tomentosiformis. Sheet 11 – ITS1 amplicon sequencing – cDNA. Sheet 12 – ITS1 amplicon sequencing – gDNA. Sheet 13 – Summary of ITS1 amplicon sequencing.

Online Resource 4. Alignment of ITS1 consensus sequences from Nicotiana sylvestris (SYL58) and N. tomentosiformis (TOM58).

Online Resource 5. Analysis of tandem repeats in the A-subregion of IGS in Nicotiana tabacum, N. tomentosiformis, N. sylvestris.

Online Resource 6. Positions of restriction endonuclease recognition sites and regions of 26S probe hybridisation (rectangle) in rDNA units.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunerová, J., Renny-Byfield, S., Matyášek, R. et al. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid. Plant Syst Evol 303, 1043–1060 (2017). https://doi.org/10.1007/s00606-017-1442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1442-7

Keywords

Navigation