Log in

Fluorescent DNA tetrahedral probe with catalytic hairpin self-assembly reaction for imaging of miR-21 and miR-155 in living cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A CHA-based fluorescent DNA tetrahedral probe (FDTp) has been designed to detect the microRNAs miR-21 and miR-155 sensitively and specifically in living cells. The design consisted of functional elements (H1, H2, and Protector) connected to a DNA tetrahedron modified with two pairs of fluorophores and quenching groups. In the presence of miR-21, the chain displacement effect was triggered and Cy3 fluorescence was emitted. In the presence of miR-155, the signal of the catalytic hairpin assembly (CHA) between H1 and H2 on FDTp was amplified, making the fluorescence of FAM sensitive to miR-155. Using this method, the detection limit for miR-155 was 5 pM. The FDTp successfully imaged miR-21 and miR-155 in living cells and distinguished a variety of cell lines based on their expression levels of miR-21 and miR-155. The detection and imaging of dual targets in this design ensured the accuracy of tumor diagnosis and provided a new method for early tumor diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Availability of data and materials

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. (2020) Comparison of magnetic resonance imaging and transrectal ultrasound informed prostate biopsy for prostate cancer diagnosis in biopsy naive men: a systematic review and meta-analysis REPLY. J Urol 203:1093–1093. https://doi.org/10.1097/ju.0000000000000595.02

  2. Lecler A, Boucenna M, Lafitte F, Koskas P, Nau E, Jacomet PV, Berges O (2017) Usefulness of colour Doppler flow imaging in the management of lacrimal gland lesions. Eur Radiol 27:779–789. https://doi.org/10.1007/s00330-016-4438-8

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136:215–233. https://doi.org/10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki HI, Miyazono K (2011) Emerging complexity of microRNA generation cascades. J Biochem 149:15–25. https://doi.org/10.1093/jb/mvq113

    Article  CAS  PubMed  Google Scholar 

  5. Di Leva G, Croce CM (2010) Roles of small RNAs in tumor formation. Trends Mol Med 16:257–267. https://doi.org/10.1016/j.molmed.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle regulation. Cell Cycle 6:2127–2132. https://doi.org/10.4161/cc.6.17.4641

    Article  CAS  PubMed  Google Scholar 

  7. Huang SX, Fan WY, Wang L, Liu H, Wang X, Zhao H, Jiang WB (2020) Maspin inhibits MCF-7 cell invasion and proliferation by downregulating miR-21 and increasing the expression of its target genes. Oncol Lett 19:2621–2628. https://doi.org/10.3892/ol.2020.11360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: A typical multifunctional microRNA. BBA-Mol Basis Dis 1792:497–505. https://doi.org/10.1016/j.bbadis.2009.02.013

    Article  CAS  Google Scholar 

  9. Wang H, Tan ZQ, Hu H, Liu HZ, Wu TW, Zheng C, Tu JC (2019) microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer 19:738. https://doi.org/10.1186/s12885-019-5951-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang CM, Zhao J, Deng HY (2013) MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci 20:79. https://doi.org/10.1186/1423-0127-20-79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175. https://doi.org/10.1093/nar/gnh171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discovery 16:203–221. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  13. Wanunu M, Dadosh T, Ray V, ** JM, McReynolds L, Drndic M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814. https://doi.org/10.1038/nnano.2010.202

    Article  CAS  PubMed  Google Scholar 

  14. Silverman SK (2016) Catalyic DNA: Scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci 41:595–609. https://doi.org/10.1016/j.tibs.2016.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li BL, Ellington AD, Chen X (2011) Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res 39. https://doi.org/10.1093/nar/gkr504.

  16. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A 101:15275–15278. https://doi.org/10.1073/pnas.0407024101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lio DCS, Liu CH, Wiraja C, Qiu BY, Fhu CW, Wang XM, Xu CJ (2018) Molecular beacon gold nanosensors for Leucine-Rich Alpha-2-Glycoprotein-1 detection in pathological angiogenesis. ACS Sens 3:1647–1655. https://doi.org/10.1021/acssensors.8b00312

    Article  CAS  PubMed  Google Scholar 

  18. Liu Q, Liu M, ** Y, Li BX (2022) Rapid and enzyme-free signal amplification for fluorescent detection of microRNA via localized catalytic hairpin assembly on gold nanoparticles. Talanta 242. https://doi.org/10.1016/j.talanta.2021.123142

  19. Wang S, Wang L, Xu XW, Li X, Jiang W (2019) MnO2 nanosheet-mediated ratiometric fluorescence biosensor for MicroRNA detection and imaging in living cells. Anal Chim Acta 1063:152–158. https://doi.org/10.1016/j.aca.2019.02.049

    Article  CAS  PubMed  Google Scholar 

  20. Liu XG, Zhang F, **g XX, Pan MC, Liu P, Li W, Fan CH (2018) Complex silica composite nanomaterials templated with DNA origami. Nature 559:593–598. https://doi.org/10.1038/s41586-018-0332-7

    Article  CAS  PubMed  Google Scholar 

  21. Fu XY, Ke GL, Peng FQ, Hu X, Li JQ, Shi YY, Tan WH (2020) Size-selective molecular recognition based on a confined DNA molecular sieve using cavity-tunable framework nucleic acids. Nat Commun 11. https://doi.org/10.1038/s41467-020-15297-7

  22. Melnychuk N, Klymchenko AS (2018) DNA-functionalized dye-loaded polymeric nanoparticles: ultrabright fret platform for amplified detection of nucleic acids. J Am Chem Soc 140:10856–10865. https://doi.org/10.1021/jacs.8b05840

    Article  CAS  PubMed  Google Scholar 

  23. Kallenbach NR, Ma RI, Seeman NC (1983) An immobile nucleic-acid junction constructed from oligonucleotides. Nature 305:829–831. https://doi.org/10.1038/305829a0

    Article  CAS  Google Scholar 

  24. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  CAS  PubMed  Google Scholar 

  25. Zhang RY, Zhang RX, Jiang W, Xu XW (2021) A multicolor DNA tetrahedron nanoprobe for analyzing human telomerase in living cells. Chem Commun 57:2188–2191. https://doi.org/10.1039/d0cc07893j

    Article  CAS  Google Scholar 

  26. **ng C, Chen ZY, Lin YH, Wang M, Xu X, Dai JD, Lu CH (2021) Accelerated DNA tetrahedron-based molecular beacon for efficient microRNA imaging in living cells. Chem Commun 57:3251–3254. https://doi.org/10.1039/d0cc08172h

    Article  CAS  Google Scholar 

  27. Yue XM, Qiao YQ, Gu DN, Wu ZX, Zhao WH, Li XY, Meng M (2020) Reliable FRET-ON imaging of telomerase in living cells by a tetrahedral DNA nanoprobe integrated with structure-switchable molecular beacon. Sens Actuator B-Chem 312:127943. https://doi.org/10.1016/j.snb.2020.127943

    Article  CAS  Google Scholar 

  28. Tyagi S, Kramer FR (1996) Molecular beacons: Probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308. https://doi.org/10.1038/nbt0396-303

    Article  CAS  PubMed  Google Scholar 

  29. Wan Y, Zhu N, Lu Y, Wong PK (2019) DNA transformer for visualizing endogenous RNA dynamics in live cells. Anal Chem 91:2626–2633. https://doi.org/10.1021/acs.analchem.8b02826

    Article  CAS  PubMed  Google Scholar 

  30. Chen C, Wang JS (2020) Optical biosensors: an exhaustive and comprehensive review. Analyst 145:1605–1628. https://doi.org/10.1039/c9an01998g

    Article  CAS  PubMed  Google Scholar 

  31. Peltomaa R, Glahn-Martinez B, Benito-Pena E, Moreno-Bondi MC (2018) Optical biosensors for label-free detection of small molecules. Sensors 18. https://doi.org/10.3390/s18124126

  32. Quan K, Yi CP, Yang XH, He XX, Huang J, Wang KM (2020) FRET-based nucleic acid probes: Basic designs and applications in bioimaging. Trac-Trends Anal Chem 124. https://doi.org/10.1016/j.trac.2019.115784

  33. Zhu D, Wei YQ, Sun T, Zhang CW, Ang L, Su S, Wang LH (2021) Encoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAs. Anal Chem 93:2226–2234. https://doi.org/10.1021/acs.analchem.0c04092

    Article  CAS  PubMed  Google Scholar 

  34. Gong X, Wei J, Liu J, Li RM, Liu XQ, Wang F (2019) Programmable intracellular DNA biocomputing circuits for reliable cell recognitions. Chem Sci 10:2989–2997. https://doi.org/10.1039/c8sc05217d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Walsh AS, Yin HF, Erben CM, Wood MJA, Turberfield AJ (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432. https://doi.org/10.1021/nn2005574

    Article  CAS  PubMed  Google Scholar 

  36. Lv WY, Li CH, Lin HR, Li LL, Zou HY, Li CM, Huang CZ (2022) A high-integrated DNA biocomputing platform for MicroRNA sensing in living cells. Biosens Bioelectron 207. https://doi.org/10.1016/j.bios.2022.114183

  37. Li CH, Lv WY, Yang FF, Zhen SJ, Huang CZ (2022) Simultaneous imaging of dual micrornas in cancer cells through catalytic hairpin assembly on a DNA tetrahedron. ACS Appl Mater Interfaces 14:12059–12067. https://doi.org/10.1021/acsami.1c23227

    Article  CAS  PubMed  Google Scholar 

  38. Shahsavar K, Shokri E, Hosseini M (2020) A fluorescence-readout method for miRNA-155 detection with double-hairpin molecular beacon based on quadruplex DNA structure. Microchem J 158. https://doi.org/10.1016/j.microc.2020.105277

  39. Bai HJ, Yan YR, Li DD, Fan NK, Cheng WQ, Yang W, Ding SJ (2022) Dispersion-to-localization of catalytic hairpin assembly for sensitive sensing and imaging microRNAs in living cells from whole blood. Biosens Bioelectron 198:113821. https://doi.org/10.1016/j.bios.2021.113821

    Article  CAS  PubMed  Google Scholar 

  40. Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP (2023) MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 25:e14. https://doi.org/10.1017/erm.2023.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li F, Cao Y, Kan X, Li D, Li Y, Huang C, Liu P (2023) AS1411-conjugated doxorubicin-loaded silver nanotriangles for targeted chemo-photothermal therapy of breast cancer. Nanomedicine (Lond) 18:1077–1094. https://doi.org/10.2217/nnm-2023-0158

    Article  CAS  PubMed  Google Scholar 

  42. Chauhan M, Singh RP, Sonali, Yadav B, Shekhar S, Kumar A, Pandey DK (2023) Development and characterization of micelles for nucleolin-targeted co-delivery of docetaxel and upconversion nanoparticles for theranostic applications in brain cancer therapy. J Drug Deliv Sci Technol 87:104808. https://doi.org/10.1016/j.jddst.2023.104808

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 82072058, No. 82230070).

Author information

Authors and Affiliations

Authors

Contributions

Shan Wang1 and Jiejie Guang1 contributed equally to this work. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Li Li, Wei Meng or Fang Hu.

Ethics declarations

Competing interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14346 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Guang, J., Gao, Y. et al. Fluorescent DNA tetrahedral probe with catalytic hairpin self-assembly reaction for imaging of miR-21 and miR-155 in living cells. Microchim Acta 191, 462 (2024). https://doi.org/10.1007/s00604-024-06529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06529-4

Keywords

Navigation