Log in

Hybrid nanoflower-based electrochemical lateral flow immunoassay for Escherichia coli O157 detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic–inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line. In the presence of E. coli O157, an organic–inorganic nanoflower-E. coli O157-antimicrobial peptide-labelled ferrocene sandwich structure is formed on the lateral flow detection line. Differential pulse voltammetry is applied using a smartphone-based device to monitor ferrocene on the detection line. The resulting electrochemical biosensor could specifically detect E. coli O157 with a limit of detection of 25 colony-forming units mL−1. Through substitution of antibodies of organic components in organic–inorganic nanoflowers, biosensors have great potential for the detection of other pathogens in biomedical research and clinical diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will made available on request.

References

  1. Zhong Y, Zheng XT, Li Q-l, Loh XJ, Su X, Zhao S (2023) Antibody conjugated Au/Ir@Cu/Zn-MOF probe for bacterial lateral flow immunoassay and precise synergistic antibacterial treatment. Biosens Bioelectron 224. https://doi.org/10.1016/j.bios.2022.115033.

  2. Chen R, Wang H, Sun C (2023) Au@SiO2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B1 and ochratoxin A. Talanta 258. https://doi.org/10.1016/j.talanta.2023.124401.

  3. Mulvaney SP, Kidwell DA, Lanese JN, Lopez RP, Sumera ME, Wei E (2020) Catalytic lateral flow immunoassays (cLFIA™): amplified signal in a self-contained assay format. Sens Bio-Sens Res 30. https://doi.org/10.1016/j.sbsr.2020.100390.

  4. Yang S, Du J, Wei M (2023) Colorimetric-photothermal-magnetic three-in-one lateral flow immunoassay for two formats of biogenic amines sensitive and reliable quantification. Anal Chim Acta 1239. https://doi.org/10.1016/j.aca.2022.340660.

  5. Ben Aissa A, Jara JJ, Sebastián RM, Vallribera A, Campoy S, Pividori MI (2017) Comparing nucleic acid lateral flow and electrochemical genosensing for the simultaneous detection of foodborne pathogens. Biosens Bioelectron 88:265–272. https://doi.org/10.1016/j.bios.2016.08.046

    Article  CAS  PubMed  Google Scholar 

  6. **ng Y, Liu J, Luo J (2022) A dual-channel intelligent point-of-care testing system for soluble programmed death-1 and programmed death-ligand 1 detection based on folding paper-based immunosensors. ACS Sensors 7(2):584–592. https://doi.org/10.1021/acssensors.1c02486

    Article  CAS  PubMed  Google Scholar 

  7. Traipop S, Jampasa S, Tangkijvanich P, Chuaypen N, Chailapakul O (2023) Dual-label vertical flow-based electrochemical immunosensor for rapid and simultaneous detection of hepatitis B surface and e virus antigens. Sensors Actuators B: Chem. 387. https://doi.org/10.1016/j.snb.2023.133769.

  8. Wang J, Wang Y, Hu X (2024) A dual-RPA based lateral flow strip for sensitive, on-site detection of CP4- EPSPS and Cry1Ab/ Ac genes in genetically modified crops. Food Sci Human Wellness 13(1):183–190. https://doi.org/10.26599/fshw.2022.9250015

    Article  CAS  Google Scholar 

  9. Cheng J, Yang G, Guo J, Liu S, Guo J (2022) Integrated electrochemical lateral flow immunoassays (eLFIAs): recent advances. Analyst 147(4):554–570. https://doi.org/10.1039/d1an01478a

    Article  CAS  PubMed  Google Scholar 

  10. Li G, Li Q, Wang X (2023) Lateral flow immunoassays for antigens, antibodies and haptens detection. Int J Biol Macromol 242. https://doi.org/10.1016/j.ijbiomac.2023.125186.

  11. Sinawang Prima D, Rai V, Ionescu RE, Marks RS (2016) Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron 77:400–408. https://doi.org/10.1016/j.bios.2015.09.048

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Zhang Q, Cheng F, Chang Y, Liu M, Li Y (2021) Fast-responding functional DNA superstructures for stimuli-triggered protein release. Chem Sci 12(24):8282–8287. https://doi.org/10.1039/d1sc00795e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chorti P, Kazi AP, Haque A-MJ, Wiederoder M, Christodouleas DC (2022) Flow-through electrochemical immunoassay for targeted bacteria detection. Sens Actuators B: Chem 351. https://doi.org/10.1016/j.snb.2021.130965.

  14. Kamsong W, Primpray V, Pasakon P (2022) Highly sensitive and disposable screen-printed ionic liquid/graphene based electrochemical sensors. Electrochem Commun 135. https://doi.org/10.1016/j.elecom.2022.107209.

  15. Petruzzi L, Maier T, Ertl P, Hainberger R (2022) Quantitative detection of C-reactive protein in human saliva using an electrochemical lateral flow device. Biosens Bioelectron: X. 10:100136. https://doi.org/10.1016/j.biosx.2022.100136

    Article  CAS  Google Scholar 

  16. Deenin W, Yakoh A, Pimpitak U (2023) Electrochemical lateral-flow device for rapid COVID-19 antigen-diagnostic testing. Bioelectrochemistry 152. https://doi.org/10.1016/j.bioelechem.2023.108438.

  17. Mahari S, Roberts A, Gandhi S (2022) Probe-free nanosensor for the detection of Salmonella using gold nanorods as an electroactive modulator. Food Chem 390. https://doi.org/10.1016/j.foodchem.2022.133219.

  18. Mahari S, Prakashan D, Gandhi S (2023) Immunochromatographic assay for the point-of-care diagnosis of food borne Salmonella strains using smartphone application. Colloids Surf B: Biointerfaces 226. https://doi.org/10.1016/j.colsurfb.2023.113319.

  19. Mahari S, Gandhi S (2022) Electrochemical immunosensor for detection of avian Salmonellosis based on electroactive reduced graphene oxide (rGO) modified electrode. Bioelectrochemistry 144. https://doi.org/10.1016/j.bioelechem.2021.108036.

  20. Roberts A, Dhanze H, Sharma GT, Gandhi S (2023) Point‐of‐care detection of Japanese encephalitis virus biomarker in clinical samples using a portable smartphone‐enabled electrochemical “Sensit” device. Bioeng Transl Med 8(3).https://doi.org/10.1002/btm2.10506.

  21. Bu S-J, Wang K-Y, Liu X (2020) Ferrocene-functionalized nanocomposites as signal amplification probes for electrochemical immunoassay of Salmonella typhimurium. Microchim Acta 187(11). https://doi.org/10.1007/s00604-020-04579-y.

  22. Deenin W, Yakoh A, Kreangkaiwal C, Chailapakul O, Patarakul K, Chaiyo S (2022) Integrated lateral flow electrochemical strip for leptospirosis diagnosis. Anal Chem 94(5):2554–2560. https://doi.org/10.1021/acs.analchem.1c04440

    Article  CAS  PubMed  Google Scholar 

  23. Preechakasedkit P, Panphut W, Lomae A, Wonsawat W, Citterio D, Ruecha N (2023) Dual colorimetric/electrochemical detection of Salmonella typhimurium using a laser-induced graphene integrated lateral flow immunoassay strip. Anal Chem 95(37):13904–13912. https://doi.org/10.1021/acs.analchem.3c02252

    Article  CAS  PubMed  Google Scholar 

  24. Zhang G, Hu H, Deng S(2023) An integrated colorimetric and photothermal lateral flow immunoassay based on bimetallic Ag–Au urchin-like hollow structures for the sensitive detection of E. coli O157:H7. Biosens Bioelectron 225. https://doi.org/10.1016/j.bios.2023.115090.

  25. Chen Y, Ma J, Yin X (2023) Joint-detection of Salmonella typhimurium and Escherichia coli O157:H7 by an immersible amplification dip-stick immunoassay. Biosens Bioelectron 224. https://doi.org/10.1016/j.bios.2023.115075.

  26. Hassan AHA, Bergua JF, Morales-Narváez E, Mekoçi A (2019) Validity of a single antibody-based lateral flow immunoassay depending on graphene oxide for highly sensitive determination of E. coli O157:H7 in minced beef and river water. Food Chem 297. https://doi.org/10.1016/j.foodchem.2019.124965.

  27. Ren W, Ballou DR, FitzGerald R, Irudayaraj J (2019) Plasmonic enhancement in lateral flow sensors for improved sensing of E. coli O157:H7. Biosens Bioelectron 126:324–331. https://doi.org/10.1016/j.bios.2018.10.066

    Article  CAS  PubMed  Google Scholar 

  28. Ren Y, Gao P, Song Y (2021) An aptamer-exonuclease III (Exo III)–assisted amplification-based lateral flow assay for sensitive detection of Escherichia coli O157:H7 in milk. J Dairy Sci 104(8):8517–8529. https://doi.org/10.3168/jds.2020-19939

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Science and Technology Development Plans of Jilin Province (20230203143SF) and the Education Department of Jilin Province (JJKH20210368KJ).

Author information

Authors and Affiliations

Authors

Contributions

Jiaqi Wei: Experiments, methodology, data curation, writing—original draft. Shengjun Bu: Conceptualization, methodology. Hongyu Zhou: Validation. He Sun: Investigation. Zhuo Hao: Investigation. Guijuan Qu: Conceptualization, methodology, statistical analysis, supervision. Jiayu Wan: Conceptualization; project administration; writing, review; supervision.

Corresponding authors

Correspondence to Guijuan Qu or Jiayu Wan.

Ethics declarations

Ethics approval

No human or animal studies are presented in the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Bu, S., Zhou, H. et al. Hybrid nanoflower-based electrochemical lateral flow immunoassay for Escherichia coli O157 detection. Microchim Acta 191, 453 (2024). https://doi.org/10.1007/s00604-024-06513-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06513-y

Keywords

Navigation