Log in

An electrochemical sensor based on carbon composites derived from bisbenzimidazole biphenyl coordination polymers for dihydroxybenzene isomers detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Co-based coordination polymers (CoCP) based on 4,4′-bis(1H-benzo[d]imidazol-1-yl)-1,1′-biphenyl (BMB) ligand have been synthesized for the first time by the solvothermal method. The CoCP was carbonized at 700 °C under a nitrogen atmosphere to obtain carbide coordination polymer (C-CoCP) with a unique two-dimensional layered network structure. C-CoCP@GO was obtained by binding with GO and C-CoCP, its morphology and structure were investigated by XRD, SEM, EDS, FTIR, and TGA, which confirmed its two-dimensional stacked layered structure with high catalytic activity and large specific surface area. A highly sensitive electrochemical sensor was constructed for the simultaneous detection of hydroquinone and catechol based on the prepared carbon-based composite. Under optimized conditions, the working potentials (vs. Ag/AgCl) of HQ and CC are at 0.097 V and 0.213 V, respectively. The sensor exhibited an extremely wide linear range of 3–600 μM and 3–1750 μM for hydroquinone (HQ) and catechol (CC), respectively, with limits of detection (LOD) of 0.46 μM and 0.27 μM. The electrode material demonstrated stability over 14 days without significant attenuation of the response signal. Impressively, the sensor shows high stability, reproducibility, and selectivity due to the stable carbon skeleton structure of the C-CoCP material. In addition, it can be applied to the detection of hydroquinone in real samples with high interference immunity and high recovery. Hence, the C-CoCP@GO composite proved to be a great prospect and highly sensitive sensing platform for the detection of phenolic isomers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Hajipour M, Zamani HA, Karimi-Maleh H (2023) Powerful and fast nanostructure electrochemical sensor for monitoring of carbidopa catechol-based drug in water and biological fluids. Chemosphere 312:137192. https://doi.org/10.1016/j.chemosphere.2022.137192

    Article  CAS  PubMed  Google Scholar 

  2. Sun ZY, Wang XH, Liu C, Fang GD, Chu LG, Gu C, Gao J (2021) Persistent free radicals from low-molecular-weight organic compounds enhance cross-coupling reactions and toxicity of anthracene on amorphous silica surfaces under light. Environ Sci Technol 55(6):3716–3726. https://doi.org/10.1021/acs.est.0c07472

    Article  CAS  PubMed  Google Scholar 

  3. Park JM, Kim CM, Jhung SH (2021) Melamine/polyaniline-derived carbons with record-high adsorption capacities for effective removal of phenolic compounds from water. Chem Eng J 420:127627. https://doi.org/10.1016/j.cej.2020.127627

    Article  CAS  Google Scholar 

  4. Liu YN, Wang QZ, Guo SW, Jia P, Shui YH, Yao SY, Huang C, Zhang M, Wang L (2018) Highly selective and sensitive fluorescence detection of hydroquinone using novel silicon quantum dots. Sensors Actuators B Chem 275:415–421. https://doi.org/10.1016/j.snb.2018.08.073

    Article  CAS  Google Scholar 

  5. Yang M, Batchelor-McAuley C, Kätelhön E, Compton RG (2017) Reaction layer imaging using fluorescence electrochemical microscopy. Anal Chem 89(12):6870–6877. https://doi.org/10.1021/acs.analchem.7b01360

    Article  CAS  PubMed  Google Scholar 

  6. Moldoveanu SC, Kiser M (2007) Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke. J Chromatogr A 1141(1):90–97. https://doi.org/10.1016/j.chroma.2006.11.100

    Article  CAS  PubMed  Google Scholar 

  7. Bielicka-Daszkiewicz K, Dębicka M, Voelkel A (2004) Comparison of three derivatization ways in the separation of phenol and hydroquinone from water samples. J Chromatogr A 1052(1-2):233–236. https://doi.org/10.1016/j.chroma.2004.07.067

    Article  CAS  PubMed  Google Scholar 

  8. Lerma-García M, Lantano C, Chiavaro E, Cerretani L, Herrero-Martínez J, Simó-Alfonso E (2009) Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography. Food Res Int 42(10):1446–1452. https://doi.org/10.1016/j.foodres.2009.07.027

    Article  CAS  Google Scholar 

  9. Umapathi R, Raju CV, Ghoreishian SM, Rani GM, Kumar K, Oh M-H et al (2022) Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord Chem Rev 470:214708. https://doi.org/10.1016/j.ccr.2022.214708

    Article  CAS  Google Scholar 

  10. Zhang Y, Wang Y, Zhang ZQ, Sobhy A, Sato S, Uchida M, Hasebe, Y (2021) Natural molybdenite-and tyrosinase-based amperometric catechol biosensor using acridine orange as a glue, anchor, and stabilizer for the adsorbed tyrosinase. ACS omega 6(21):13719–13727. https://doi.org/10.1021/acsomega.1c00973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. AN JS, Sandhya K (2022) Picomolar level electrochemical detection of hydroquinone, catechol and resorcinol simultaneously using a MoS2 nano-flower decorated graphene. Analyst 147(13):2966–2979. https://doi.org/10.1039/d2an00531j

    Article  CAS  Google Scholar 

  12. Huang RM, Chen SS, Yu JG, Jiang XY (2019) Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicol Environ Saf 184:109619. https://doi.org/10.1016/j.ecoenv.2019.109619

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Liu XY, Zhang S, Yang LQ, Liu ML, Zhang YY,Yao SZ (2017) Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochim Acta 231:677–685. https://doi.org/10.1016/j.electacta.2017.02.060

    Article  CAS  Google Scholar 

  14. Fan ZC, Li Z, Wei XY, Kong QQ, Zhao J, Li L, Li JH, Liu ZQ, Zong ZM (2023) Porous carbon fabricated by a residue from Longquan lignite ethanolysis as an electrochemical sensor for simultaneous detection of hydroquinone and catechol in the presence of resorcinol. Microchem J 189:108543. https://doi.org/10.1016/j.microc.2023.108543

    Article  CAS  Google Scholar 

  15. Zhang Y, Wang Y, Dong Y, Zhang ZQ, Hasebe Y, Zhu JM, Liu ZB, Gao EJ (2023) Effect of acridine orange on improving the electrochemical performance of tyrosinase adsorbed sulfide minerals based catechol biosensor. ChemistrySelect 8(2):e202202444. https://doi.org/10.1002/slct.202202444

    Article  CAS  Google Scholar 

  16. Ma P, Hu F, Wang J, Niu J (2019) Carboxylate covalently modified polyoxometalates: from synthesis, structural diversity to applications. Coord Chem Rev 378:281–309. https://doi.org/10.1016/j.ccr.2019.04.008

    Article  CAS  Google Scholar 

  17. López I, Le Poul N (2021) Low-temperature electrochemistry and spectroelectrochemistry for coordination compounds. Coord Chem Rev 436:213823. https://doi.org/10.1016/j.ccr.2021.213823

    Article  CAS  Google Scholar 

  18. Yu X, Ryadun AA, Pavlov DI, Guselnikova TY, Potapov AS, Fedin VP (2023) Highly luminescent lanthanide metal-organic frameworks with tunable color for nanomolar detection of iron (III), ofloxacin and gossypol and anti-counterfeiting applications. Angew Chem Int Ed 62(35):e202306680. https://doi.org/10.1002/anie.202306680

    Article  CAS  Google Scholar 

  19. Pena ES, Lifshits LM, Eckshtain‐Levi M, Bachelder EM, Ainslie KM (2023). Metal–organic coordination polymers for delivery of immunomodulatory agents, and infectious disease and cancer vaccines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 15(4): e1877. https://doi.org/10.1002/wnan.1877

  20. Cheng G, Liu X, Liu Y, Liu Y, Ma R, Luo J et al (2022) Ultrasmall coordination polymers for alleviating ROS-mediated inflammatory and realizing neuroprotection against Parkinson’s disease. Research 2022. https://doi.org/10.34133/2022/9781323

    Article  Google Scholar 

  21. Guo YY, Liu XH, Liu XD, Xu N, Wang XL (2023) A series of polyoxometalate-based COF composites by one-pot mechanosynthesis of thioether to sulfone. Dalton Trans 52(35):12264–12270. https://doi.org/10.1039/D3DT02116E

    Article  CAS  PubMed  Google Scholar 

  22. Liu W, Yao W, Xu BT, Fedin VP, Gao EJ (2023) Structural extension of 2D complexes to 3D complexes and their applications. Polyoxometalates. https://doi.org/10.26599/POM.2023.9140032

  23. **e J, Cheng XF, Cao X, He JH, Guo W, Li DS, Xu ZC, Huang YZ, Lu JM, Zhang QC (2019) Nanostructured metal–organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage. Small 15(49):1903188. https://doi.org/10.1002/smLl.201903188

    Article  CAS  Google Scholar 

  24. Cai GF, Cui P, Shi WX, Morris S, Lou SN, Chen JW, Ciou JH, Paidi VK, Lee KS, Li SZ, Lee PS (2020) One\dimensional π–d conjugated coordination polymer for electrochromic energy storage device with exceptionally high performance. Adv Sci 7(20):1903109. https://doi.org/10.1002/advs.201903109

    Article  CAS  Google Scholar 

  25. Daniel M, Mathew G, Anpo M, Neppolian B (2022) MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview. Coord Chem Rev 468:214627. https://doi.org/10.1016/j.ccr.2022.214627

    Article  CAS  Google Scholar 

  26. Arabi M, Ostovan A, Li JH, Wang XY, Zhang ZY, Choo J (2021) Molecular imprinting: green perspectives and strategies. Adv Mater 33(30):2100543. https://doi.org/10.1002/adma.202100543

    Article  CAS  Google Scholar 

  27. Arabi M, Ostovan A, Wang YQ, Mei RC, Fu LW, Li JH, Wang XY,Chen LX (2022) Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination. Nat Commun 13(1):5757. https://doi.org/10.1038/s41467-022-33448-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arabi M, Ostovan A, Zhang ZY, Wang YQ, Mei RC, Fu LW, Wang XY, Ma JP, Chen LX (2021) Label-free SERS detection of Raman-inactive protein biomarkers by Raman reporter indicator: toward ultrasensitivity and universality. Biosens Bioelectron 174:112825. https://doi.org/10.1016/j.bios.2020.112825

    Article  CAS  PubMed  Google Scholar 

  29. Yan T, Zhang XY, Zhao Y, Sun WY (2023) Stable Zr (iv) coordination polymers with electroactive metal-terpyridine units for enhanced electrochemical sensing dopamine. J Mater Chem A 11(1):268–275. https://doi.org/10.1039/D2TA06797H

    Article  CAS  Google Scholar 

  30. Iftikhar T, Aziz A, Ashraf G, Xu Y, Li GF, Zhang TS, Asif M, **ao Fei, Liu HF (2022) Engineering MOFs derived metal oxide nanohybrids: towards electrochemical sensing of catechol in tea samples. Food Chem 395:133642. https://doi.org/10.1016/j.foodchem.2022.133642

    Article  CAS  PubMed  Google Scholar 

  31. Zhao JY, Long YY, He CJ, Yang HS, Zhao SX, Luo XG, Huo DQ, Hou CJ (2023) Simultaneous electrochemical detection of Cd2+ and Pb2+ based on an MOF-derived carbon composite linked with multiwalled carbon nanotubes. ACS Sustain Chem Eng 11(6):2160–2171. https://doi.org/10.1021/acssuschemeng.2c05240

    Article  CAS  Google Scholar 

  32. Karuppusamy N, Mariyappan V, Chen S-M, Ramachandran R (2022) A novel electrochemical sensor for the detection of enrofloxacin based on a 3D flower-like metal tungstate-incorporated reduced graphene oxide nanocomposite. Nanoscale 14(4):1250–1263. https://doi.org/10.1039/D1NR06343J

    Article  CAS  PubMed  Google Scholar 

  33. Li M, ** XL, Liu QQ, Nie ZR, Ma LW (2019) Direct electrolytic separation of tungsten and cobalt from waste cemented carbide and electrochemical behavior of tungsten and cobalt ions in NaF–KF molten salts. J Electroanal Chem 833:480–489. https://doi.org/10.1016/j.jelechem.2018.12.032

    Article  CAS  Google Scholar 

  34. Zhang J, Qian J, Ran J, ** P, Yang L, Gao D (2020) Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal 10(21):12376–12384. https://doi.org/10.1021/acscatal.0c03756

    Article  CAS  Google Scholar 

  35. Nguyen LT, Nguyen TT, Nguyen KD, Phan NT (2012) Metal–organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Appl Catal A Gen 425:44–52. https://doi.org/10.1016/j.apcata.2012.02.045

    Article  CAS  Google Scholar 

  36. **ao YH, Zhang JY, Su DC, Zhang AQ, ** QX, Zhou LM, Wu SD, Wang XZ, Chen W, Fang SM (2020) In-situ growth of V-shaped CoSe2 nanorods on graphene with C–Co bonding for high-rate and long-life sodium-ion batteries. J Alloys Compd 819:153359. https://doi.org/10.1016/j.jallcom.2019.153359

    Article  CAS  Google Scholar 

  37. Vignesh A, Vajeeston P, Pannipara M, Al-Sehemi AG, **a Y (2022) Bimetallic metal-organic framework derived 3D hierarchical NiO/Co3O4/C hollow microspheres on biodegradable garbage bag for sensitive, selective, and flexible enzyme-free electrochemical glucose detection. Chem Eng J 430:133157. https://doi.org/10.1016/j.cej.2021.133157

    Article  CAS  Google Scholar 

  38. Cong ZZ, Zhu MC, Zhang Y, Yao W, Kosinova M, Fedin VP, Wu SY, Gao EJ (2022) Three novel metal–organic frameworks with different coordination modes for trace detection of anthrax biomarkers. Dalton Trans 51(1):250–256. https://doi.org/10.1039/D1DT03760A

    Article  CAS  Google Scholar 

  39. Wu XL, Guo YG, Su J, **ong JW, Zhang YL, Wan LJ (2013) Carbon‐Nanotube‐Decorated Nano‐LiFePO4@C Cathode Material with Superior High‐Rate and Low‐Temperature Performances for Lithium‐Ion Batteries. Adv Energy Mater 3(9):1155–1160. https://doi.org/10.1002/aenm.201300159

    Article  CAS  Google Scholar 

  40. Liu C, Alwarappan S, Chen Z, Kong X, Li CZ (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25(7):1829–1833. https://doi.org/10.1016/j.bios.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  41. Wu S, He Q, Tan C, Wang Y, Zhang H Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron. https://doi.org/10.1002/smLl.201202896

  42. Rani SD, Ramachandran R, Sheet S, Aziz MA, Lee YS, Al-Sehemi AG et al (2020) NiMoO4 nanoparticles decorated carbon nanofiber membranes for the flexible and high performance glucose sensors. Sensors Actuators B Chem 312:127886. https://doi.org/10.1016/j.snb.2020.127886

    Article  CAS  Google Scholar 

  43. Guo H, Shen Y, Ouyang H, Long Y, Li W (2019) A voltammetric sensor for simultaneous determination of hydroquinone and catechol by using a heterojunction prepared from gold nanoparticle and graphitic carbon nitride. Microchim Acta 186:1–10. https://doi.org/10.1007/s00604-019-3798-6

    Article  CAS  Google Scholar 

  44. Yilmaz UT, Uzun D, Yilmaz H (2015) A new method for rapid and sensitive determination of cholic acid in gallbladder bile using voltammetric techniques. Microchem J 122:159–163. https://doi.org/10.1016/j.microc.2015.05.002

    Article  CAS  Google Scholar 

  45. Savéant JM (2018) Molecular catalysis of electrochemical reactions. Cyclic voltammetry of systems approaching reversibility. ACS Catal 8(8):7608–7611. https://doi.org/10.1021/acscatal.8b02007

    Article  CAS  Google Scholar 

  46. Lyons ME, Doyle RL, Brandon MP (2011) Redox switching and oxygen evolution at oxidized metal and metal oxide electrodes: iron in base. Phys Chem Chem Phys 48(13):21530–21551. https://doi.org/10.1039/c1cp22470k

  47. Sultana N, Shawon SD, Nayem SA, Hasan MM, Islam T, Shah SS, Rabbani MM, Aziz MA, Ahammad A.J.S (2022) Cobalt oxide nanorod-modified GCE as sensitive electrodes for simultaneous detection of hydroquinone and catechol. Processes 10(2):390. https://doi.org/10.3390/pr10020390

    Article  CAS  Google Scholar 

  48. Wang SM, Yang L, Wang QG, Fan Y, Shang JY, Qiu SB, Li JH, Zhang WZ, Wu XM (2018) Supramolecular self-assembly of layer-by-layer graphene film driven by the synergism of π–π and hydrogen bonding interaction. J Photochem Photobiol A Chem 355:249–255. https://doi.org/10.1016/j.jphotochem.2017.09.023

    Article  CAS  Google Scholar 

  49. Wang HL, Hu QQ, Meng Y, ** Z, Fang ZL, Fu QR, Gao WH, Xu L, Song YB, Lu FS (2018) Efficient detection of hazardous catechol and hydroquinone with MOF-rGO modified carbon paste electrode. J Hazard Mater 353:151–157. https://doi.org/10.1016/j.jhazmat.2018.02.029

    Article  CAS  PubMed  Google Scholar 

  50. Zhang MX, Li MS, Wu WG, Chen JK, Ma XL, Zhang ZJ, **ang SC (2019) MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. New J Chem 43(9):3913–3920. https://doi.org/10.1039/C9NJ00417C

    Article  CAS  Google Scholar 

  51. Ranjith KS, Vilian AE, Ghoreishian SM, Umapathi R, Hwang S-K, Oh CW, Huh YS, Han YK (2022) Hybridized 1D–2D MnMoO4–MXene nanocomposites as high-performing electrochemical sensing platform for the sensitive detection of dihydroxybenzene isomers in wastewater samples. J Hazard Mater 421:126775. https://doi.org/10.1016/j.jhazmat.2021.126775

    Article  CAS  PubMed  Google Scholar 

  52. Guo HL, Peng S, Xu JH, Zhao YQ, Kang XF (2014) Highly stable pyridinic nitrogen doped graphene modified electrode in simultaneous determination of hydroquinone and catechol. Sensors Actuators B Chem 193:623–629. https://doi.org/10.1016/j.snb.2013.12.018

    Article  CAS  Google Scholar 

  53. Bukhari SAB, Nasir H, Pan LJ, Tasawar M, Sohail M, Shahbaz M, Gul F, Sitara E (2021) Supramolecular assemblies of carbon nanocoils and tetraphenylporphyrin derivatives for sensing of catechol and hydroquinone in aqueous solution. Sci Rep 11(1):1–13. https://doi.org/10.1038/s41598-021-84294-7

  54. Chen Y, He T, Liao D, Li Q, Song YY, Xue H, Zhang Y (2022) Carbon aerogels with nickel@ N-doped carbon core-shell nanoclusters as electrochemical sensors for simultaneous determination of hydroquinone and catechol. Electrochim Acta 414:140199. https://doi.org/10.1016/j.electacta.2022.140199

    Article  CAS  Google Scholar 

  55. Movahed V, Arshadi L, Ghanavati M, Nejad EM, Mohagheghzadeh Z, Rezaei M (2023) Simultaneous electrochemical detection of antioxidants Hydroquinone, Mono-Tert-butyl hydroquinone and catechol in food and polymer samples using ZnO@ MnO2-rGO nanocomposite as sensing layer. Food Chem 403:134286. https://doi.org/10.1016/j.foodchem.2022.134286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (U1608224 and 21671138), the China Scholarship Council (CSC, No. 202210340004 and CSC, No. 202210340005), and the General Fund of the Education Department Project of Liaoning Province (LJKZ0315).

Author information

Authors and Affiliations

Authors

Contributions

YZ: conceived and completed the experimental work. WL: validation and investigation. WY: review and editing. LK: Data supplementation. EG: conceptualization, funding acquisition, supervision. VPF: visualization.

Corresponding authors

Correspondence to Wei Yao or Enjun Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version contains supplementary material available at https://doi.org/10.1007/s00604-023-06099-x.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, W., Yao, W. et al. An electrochemical sensor based on carbon composites derived from bisbenzimidazole biphenyl coordination polymers for dihydroxybenzene isomers detection. Microchim Acta 191, 20 (2024). https://doi.org/10.1007/s00604-023-06099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06099-x

Keywords

Navigation