Log in

An electrochemiluminescence resonance energy transfer biosensor based on CDs/PAMAM/rGO nanocomposites and Au@Ag2S nanoparticles for PML/RARα fusion gene detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

In recent years, electrochemiluminescence resonance energy transfer (ECL-RET) with low background signal and high specificity has attracted much attention among researchers. Herein, we established a novel ECL-RET biosensor for PML/RARα fusion gene detection. In this ECL-RET system, carbon dots (CDs) with low toxicity and prominent electrochemical activity were used as donor and Au@Ag2S core–shell nanoparticles (Au@Ag2S NPs) were employed as ECL acceptor. The Au@Ag2S NPs possessed a wide ultraviolet-visible (UV-vis) absorption spectrum between 500 nm and 700 nm, which completely overlapped with the ECL spectrum of CDs. Furthermore, the CDs-decorated poly-amidoamine/reduced graphene oxide (CDs/PAMAM/rGO) nanocomposites were prepared to improve the ECL signals and served as a substrate to stably load capture probe deoxyribonucleic acid (DNA). Based on the ECL-RET biosensing strategy, the Au@Ag2S NPs-labeled assistant probes and target DNA could pair with capture probes to form the sandwich-type DNA structure and the distance between donor and accepter was closed, leading to quenching of the ECL signal of CDs. The ECL-RET biosensor represented eminent analytical performance for PML/RARα fusion gene detection with a wide linear relationship from 5 fM to 500 pM and a low detection limit of 0.72 fM, which provided a novel technical means and theoretical basis for detection and diagnosis of acute promyelocytic leukemia.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S (2021) From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 15:1960–2004

    Article  CAS  PubMed  Google Scholar 

  2. Mahato K, Chandra P (2019) Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron 128:9–16

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Xu K, Li J, Yang M, Li X, Chen Q, Lu CH (2020) Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens Bioelectron 155:112104

    Article  CAS  PubMed  Google Scholar 

  4. Peng Y, Pan YH, Sun ZW, Li JL, Yi YX, Yang J, Li GX (2021) An electrochemical biosensor for sensitive analysis of the SARS-CoV-2 RNA. Biosens Bioelectron 186:113309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng QM, Shen YZ, Li MX, Zhang ZL, Zhao W, Xu JJ, Chen HY (2016) Dual-wavelength electrochemiluminescence ratiometry based on resonance energy transfer between Au nanoparticles functionalized g-C3N4 nanosheet and Ru(bpy)32+ for microRNA detection. Anal Chem 88:937–944

    Article  CAS  PubMed  Google Scholar 

  6. Khan MS, Ameer H, Ali A, Li YY, Yang L, Ren X, Wei Q (2020) Electrochemiluminescence behaviour of silver/ZnIn2S4/reduced graphene oxide composites quenched by Au@SiO2 nanoparticles for ultrasensitive insulin detection. Biosens Bioelectron 162:112235

    Article  CAS  PubMed  Google Scholar 

  7. Zhu L, Lv X, Yu HH, Tan XR, Rong YM, Feng WH, Zhang LN, Yu JH, Zhang Y (2022) Paper-based bipolar electrode electrochemiluminescence platform combined with pencil-drawing trace for the detection of M. SssI methyltransferase. Anal Chem 94(23):8327–8334

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Xu JM, Zhou S, Zhu L, Lv X, Zhang J, Zhang LN, Zhu PH, Yu JH (2020) DNAzyme-triggered visual and ratiometric electrochemiluminescence dual-readout assay for Pb (II) based on an assembled paper device. Anal Chem 92(5):3874–3881

    Article  CAS  PubMed  Google Scholar 

  9. Ai ZJ, Zhao M, Han DB, Chen K, **ong DM, Tang H (2021) An “on-off” electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO2-Au-g-C3N4 hybrids by Ag nanocubes-VB2. Biosens Bioelectron 179:113059

    Article  CAS  PubMed  Google Scholar 

  10. Chu YX, Han TT, Deng AP, Li LL, Zhu JJ (2020) Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. Trac-Trends Anal Chem 123:115745

    Article  CAS  Google Scholar 

  11. **a MM, Zhou F, Feng XY, Sun JH, Wang L, Li N, Wang XY, Wang GF (2021) A DNAzyme-based dual-stimuli responsive electrochemiluminescence resonance energy transfer platform for ultrasensitive anatoxin-a detection. Anal Chem 93:11284–11290

    Article  CAS  PubMed  Google Scholar 

  12. Dong YP, Wang J, Peng Y, Zhu JJ (2017) A novel aptasensor for lysozyme based on electrogenerated chemiluminescence resonance energy transfer between luminol and silicon quantum dots. Biosens Bioelectron 94:530–535

    Article  CAS  PubMed  Google Scholar 

  13. Lu HJ, Pan JB, Wang YZ, Ji SY, Zhao W, Luo XL, Xu JJ, Chen HY (2018) Electrochemiluminescence energy resonance transfer system between RuSi nanoparticles and hollow Au nanocages for nucleic acid detection. Anal Chem 90:10434–10441

    Article  CAS  PubMed  Google Scholar 

  14. Gong W, Shu J, Ju P, Wu SY, Chen YZ, Ding SJ, Yang W, Luo R (2022) A stochastic DNA walker electrochemiluminescence biosensor based on quenching effect of Pt@CuS on luminol@Au/Ni-Co nanocages for ultrasensitive detection of I27L gene. Chem Eng J 434:134681

    Article  CAS  Google Scholar 

  15. Chen AY, Liang WB, Wang HJ, Zhuo Y, Chai YQ, Yuan R (2019) Anodic electrochemiluminescence of carbon dots promoted by nitrogen do** and application to rapid cancer cell detection. Anal Chem 92:1379–1385

    Article  PubMed  Google Scholar 

  16. Tian KL, Li DJ, Tang TT, Nie F, Zhou Y, Du JX, Zheng JB (2018) A novel electrochemiluminescence resonance energy transfer system of luminol-graphene quantum dot composite and its application in H2O2 detection. Talanta 185:446–452

    Article  CAS  PubMed  Google Scholar 

  17. Guo YZ, Liu JL, Chen YF, Chai YQ, Li ZH, Yuan R (2022) Boron and nitrogen-codoped carbon dots as highly efficient electrochemiluminescence emitters for ultrasensitive detection of hepatitis B virus DNA. Anal Chem 94:7601–7608

    Article  CAS  PubMed  Google Scholar 

  18. Liu PF, Wang L, Zhao KR, Liu ZJ, Cao HX, Ye SY, Liang GX (2020) High luminous efficiency Au@CDs for sensitive and label-free electrochemiluminescent detection of circulating tumor cells in serum. Sens Actuator B-Chem 316:128131

    Article  CAS  Google Scholar 

  19. Bahari D, Babamiri B, Salimi A, Hallaj R, Amininasab SM (2020) A self-enhanced ECL-RET immunosensor for the detection of CA19-9 antigen based on Ru(bpy)2(phen-NH2)2+ - Amine-rich nitrogen-doped carbon nanodots as probe and graphene oxide grafted hyperbranched aromatic polyamide as platform. Anal Chim Acta 1132:55–65

    Article  CAS  PubMed  Google Scholar 

  20. Liu JH, Chen PP, **a FQ, Liu Z, Liu HB, Yi JL, Zhou CL (2020) Sensitive electrochemiluminescence aptasensor for chlorpyrifos detection based on resonance energy transfer between MoS2/CdS nanospheres and Ag/CQDs. Sens Actuator B-Chem 315:128098

    Article  CAS  Google Scholar 

  21. Eivazzadeh-Keihan R, Noruzi EB, Chidar E, Jafari M, Davoodi F, Kashtiaray A, Gorab MG, Hashemi SM, Javanshir S, Cohan RA, Maleki A, Mahdavi M (2022) Applications of carbon-based conductive nanomaterials in biosensors. Chem Eng J 442:136183

    Article  CAS  Google Scholar 

  22. Zaida MHM, Abdullah J, Yusof NA, Sulaiman Y, Wasoh H, Nohd MFM, Issa R (2017) PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sens Actuator B-Chem 241:1024–1034

    Article  Google Scholar 

  23. **ao K, Zhu R, Du CC, Zheng HJ, Zhang XH, Chen JH (2022) Zinc-Air Battery-Assisted Self-Powered PEC Sensors for Sensitive Assay of PTP1B Activity Based on Perovskite Quantum Dots Encapsulated in Vinyl-Functionalized Covalent Organic Frameworks. Anal Chem 94:9844–9850

    Article  CAS  PubMed  Google Scholar 

  24. Lv X, Zhu L, Rong YM, Shi HH, Zhang LN, Yu JH, Zhang Y (2022) Ratiometric electrochemiluminescence lab-on-paper device for DNA methylation determination based on highly conductive copper paper electrode. Biosens Bioelectron 214:114522

    Article  CAS  PubMed  Google Scholar 

  25. Nagraik R, Sethi S, Sharma A, Kumar D, Kumar D, Kumar AP (2022) Ultrasensitive nanohybrid electrochemical sensor to detect LipL32 gene of Leptospira interrogans. Chem Pap 75:5453–5462

    Article  Google Scholar 

  26. Jayakumar K, Camarada MB, Dharuman V, Rajesh R, Venkatesan R, Ju HX, Maniraj M, Rai A, Barman SR, Wen YP (2018) Layer-by-layer-assembled AuNPs-decorated first-generation poly (amidoamine) dendrimer with reduced graphene oxide core as highly sensitive biosensing platform with controllable 3D nanoarchitecture for rapid voltammetric analysis of ultratrace DNA hybridization. ACS Appl Mater Interfaces 10:21541–21555

    Article  CAS  PubMed  Google Scholar 

  27. Luo ZM, Yuwen LH, Han YJ, Tian J, Zhu XR, Weng LX, Wang LH (2012) Reduced graphene oxide/PAMAM-silver nanoparticles nanocomposite modified electrode for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 36:179–185

    Article  CAS  PubMed  Google Scholar 

  28. Chen XJ, He Y, Zhang YY, Liu ML, Liu Y, Li JH (2014) Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. Nanoscale 6:11196

    Article  CAS  PubMed  Google Scholar 

  29. Zhu JM, Ye ZL, Fan XY, Wang HQ, Wang Z, Chen BY (2019) A highly sensitive biosensor based on Au NPs/rGO-PAMAM-Fc nanomaterials for detection of cholesterol. Int J Nanomed 14:835–849

    Article  CAS  Google Scholar 

  30. Chen Y, Zhou SW, Li LL, Zhu JJ (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115

    Article  CAS  Google Scholar 

  31. Khan MS, Ameer H, Ali A, Manzoor R, Yang L, Feng RQ, Jiang N, Wei Q (2020) Electrochemiluminescence behaviour of silver/silver orthophosphate/graphene oxide quenched by Pd@Au core-shell nanoflowers for ultrasensitive detection of insulin. Biosens Bioelectron 147:111767

    Article  CAS  PubMed  Google Scholar 

  32. Wu MS, Chen ZQ, Xu HY, Zhang AP (2017) Sensitive electrochemiluminescence resonance energy transfer (ECL-RET) between Ru(bpy)32+ and Au nanorod for hydrogen peroxide detection. Sci China-Chem 60:410–414

    Article  CAS  Google Scholar 

  33. Liu ZM, Zhang X, Ge XG, Hu LQ, Hu YJ (2019) Electrochemiluminescence sensing platform for ultrasensitive DNA analysis based on resonance energy transfer between graphitic carbon nitride quantum dots and gold nanoparticles. Sens Actuator B-Chem 297:126790

    Article  CAS  Google Scholar 

  34. Wu MS, He LJ, XuChen JJHY (2014) RuSi@Ru(bpy)32+/Au@Ag2S Nanoparticles Electrochemiluminescence Resonance Energy Transfer System for Sensitive DNA Detection. Anal Chem 86:4559–4565

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Cheng ZH, Pang YF, Cui LZ, Qian TT, Quan L, Zhao HY, Shi JL, Ke XY, Fu L (2019) Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 12:1–20

    Article  Google Scholar 

  36. Keeshan K, VieuguéP Chaudhury S, Rishi L, Gaillard C, Liang L, Garcia E, Nakamura T, Omidvar N, Kogan SC (2016) Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA. Haematologica 101:1228–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang K, Sun ZL, Feng MJ, Liu AL, Yang SY, Chen YZ, Lin XH (2011) Design of a sandwich-mode amperometric biosensor for detection of PML/RARα fusion gene using locked nucleic acids on gold electrode. Biosens. Bioelectron 26:2870–2876

    Article  CAS  PubMed  Google Scholar 

  38. Wang K, Lei Y, Zhong GX, Zheng YJ, Sun ZL, Peng HP, Chen W, Liu AL, Chen YZ, Lin XH (2015) Dual-probe electrochemical DNA biosensor based on the “Y” junction structure and restriction endonuclease assisted cyclic enzymatic am-plification for detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 71:463–469

    Article  CAS  PubMed  Google Scholar 

  39. Lei Y, Wang K, Wu SY, Huang DD, Dai M, Zheng YJ, Sun ZL, Chen YZ, Lin XH, Liu AL (2018) 2′-Fluoro ribonucleic acid modified DNA dual-probe sensing strategy for enzyme-amplified electrochemical detection of double-strand DNA of PML/RARα related fusion gene. Biosens Bioelectron 112:170–176

    Article  CAS  PubMed  Google Scholar 

  40. Lei Y, Wang K, Yang JY, Lin XH, Liu AL (2022) Sequence-specific amperometric detection based on a double-probe mode and enzyme-mediated multiple signal electrocatalysis for the double-stranded DNA of PML/RARα-related fusion gene. Anal Chim Acta 1231:340436

    Article  CAS  PubMed  Google Scholar 

  41. Zhang ZY, Huang LX, Xu ZW, Wang P, Lei Y, Liu AL (2021) Efficient Determination of PML/RARα Fusion Gene by the Electrochemical DNA Biosensor Based on Carbon Dots/Graphene Oxide Nanocomposite. Int J Nanomed 16:3497–3508

    Article  Google Scholar 

  42. Zhu JM, Shen YH, **e AJ, Zhu L (2009) Tunable surface plasmon resonance of Au@Ag2S core-shell nanostructures containing voids. J Mater Chem 19:8871–8875

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (82072379), Joint Funds for the Innovation of Science and Technology, Fujian Province (2020Y9009 & 2019Y9005), and the Natural Science Foundation of Fujian Province of China (2023J01551).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Lin Liu or Yun Lei.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1598 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZY., Lin, MT., Zhang, Y. et al. An electrochemiluminescence resonance energy transfer biosensor based on CDs/PAMAM/rGO nanocomposites and Au@Ag2S nanoparticles for PML/RARα fusion gene detection. Microchim Acta 190, 415 (2023). https://doi.org/10.1007/s00604-023-05993-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05993-8

Keywords

Navigation