Log in

Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Pollution caused by both forestry wastes and heavy metals has increasingly drawn attention owing to environmental safety concerns. After essential oil is extracted from Cinnamomum camphoras (L.), the branches are used as forestry wastes to prepare a phosphorus-doped biochar–attapulgite/bismuth film electrode decorated with magnetic Fe3O4 nanoparticles (MBA-BiFE). The smartphone-operated wireless portable sensor is employed for the simultaneous ultratrace voltammetric detection of multiple heavy metal ions (Cd2+, Pb2+, and Hg2+). Cd2+, Pb2+, and Hg2+ exhibit excellent electrochemical responses in linear ranges of 0.1 nM–5 μM, 0.01 nM–7 μM, and 0.1 nM–3 μM with limits of detection equal to 0.036, 0.003, and 0.011 nM, respectively. The recoveries of MBA–BiFE for Cd2+, Pb2+, and Hg2+ are 93.6–109.9%, 86.0–107.5%, and 94.8–104.6%, respectively, and the RSD values for repeated measurements of Cd2+, Pb2+, and Hg2+ are 4.2%, 2.8%, and 3.3%, respectively. A machine learning model based on an artificial neural network algorithm is constructed to enable a smart determination of ultratrace hazardous multiple metal ions. The portable sensor based on the screen-printed integrated three-electrode sensor modified using MBA-BiFE demonstrates advantages and practicability in outdoor detection, compared with conventional sensors based on MBA-BiFE. This study provides a smartphone-operated wireless portable sensing technique for high-potential applications in environmetallomics or agrometallomics using forestry waste-derived biochar as substrate for electrode preparation.

Highlights

• Fe3O4 decorated phosphorus-doped biochar-attapulgite/bismuth film electrode.

• A smartphone-operated sensor for analysis of multiple heavy metal ions.

• An Artificial neural network model for smart analysis of Cd2+, Pb2+, and Hg2+.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Ali J, Rasheed T, Afreen M, Anwar MT, Nawaz Z, Anwar H, Rizwan K (2020) Modalities for conversion of waste to energy — challenges and perspectives. Sci Total Environ. 727. https://doi.org/10.1016/j.scitotenv.2020.138610.

  2. Zhang X, Zhang J, Han Q, Wang X, Wang S, Yuan X, Zhang B, Zhao S (2021) Antibiotics in mariculture organisms of different growth stages: tissue-specific bioaccumulation and influencing factors. Environ Pollut 288:117715. https://doi.org/10.1016/j.envpol.2021.117715

    Article  CAS  PubMed  Google Scholar 

  3. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15(7):1917–1942. https://doi.org/10.1111/1462-2920.12134

    Article  PubMed  Google Scholar 

  4. Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, Rinklebe J, Kim KH, Kirkham MB (2019) Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int 131:104937. https://doi.org/10.1016/j.envint.2019.104937

    Article  CAS  PubMed  Google Scholar 

  6. Lian M, Wang J, Sun L, Xu Z, Tang J, Yan J, Zeng X (2019) Profiles and potential health risks of heavy metals in soil and crops from the watershed of ** River in Northeast China. Ecotoxicol Environ Saf 169:442–448. https://doi.org/10.1016/j.ecoenv.2018.11.046

    Article  CAS  PubMed  Google Scholar 

  7. Sivakumar R, Lee NY (2021) Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 275:130096. https://doi.org/10.1016/j.chemosphere.2021.130096

    Article  CAS  PubMed  Google Scholar 

  8. He M, Shen H, Li Z, Wang L, Wang F, Zhao K, Liu X, Wendroth O, Xu J (2019) Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety. Environ Pollut 244:431–439. https://doi.org/10.1016/j.envpol.2018.10.070

    Article  CAS  PubMed  Google Scholar 

  9. Barron L, Nesterenko PN, Diamond D, O’Toole M, Lau KT, Paull B (2006) Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples. Anal Chim Acta 577(1):32–37. https://doi.org/10.1016/j.aca.2006.05.101

    Article  CAS  PubMed  Google Scholar 

  10. Ay E, Tekin Z, Ozdogan N, Bakirdere S (2022) Zirconium nanoparticles based vortex assisted ligandless dispersive solid phase extraction for trace determination of lead in domestic wastewater using flame atomic absorption spectrophotometry. Bull Environ Contam Toxicol 108(2):324–330. https://doi.org/10.1007/s00128-021-03318-0

    Article  CAS  PubMed  Google Scholar 

  11. **ng G, Sardar MR, Lin B, Lin J-M (2019) Analysis of trace metals in water samples using NOBIAS chelate resins by HPLC and ICP-MS. Talanta 204:50–56. https://doi.org/10.1016/j.talanta.2019.05.041

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Deng Y, Dong H, Liu K, He N (2016) Progress on sensors based on nanomaterials for rapid detection of heavy metal ions. Sci China Chem 60(3):329–337. https://doi.org/10.1007/s11426-016-0253-2

    Article  CAS  Google Scholar 

  13. Yi Y, Zhao Y, Zhang Z, Wu Y, Zhu G (2022) Recent developments in electrochemical detection of cadmium. Trends Environ Anal Chem 33. https://doi.org/10.1016/j.teac.2021.e00152.

  14. Zhang W, Wang R, Luo F, Wang P, Lin Z (2020) Miniaturized electrochemical sensors and their point-of-care applications. Chin Chem Lett. 31(3):589–600. https://doi.org/10.1016/j.cclet.2019.09.022

    Article  CAS  Google Scholar 

  15. Ding R, Cheong YH, Ahamed A, Lisak G (2021) Heavy metals detection with paper-based electrochemical sensors. Anal Chem 93(4):1880–1888. https://doi.org/10.1021/acs.analchem.0c04247

    Article  CAS  PubMed  Google Scholar 

  16. Huo XL, Qi JF, He KC, Bao N, Shi CG (2020) Stainless steel sheets as the substrate of disposable electrochemical sensors for analysis of heavy metals or biomolecules. Anal Chim Acta 1124:32–39. https://doi.org/10.1016/j.aca.2020.05.018

    Article  CAS  PubMed  Google Scholar 

  17. Tripathi N, Hills CD, Singh RS, Atkinson CJ (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1). https://doi.org/10.1038/s41612-019-0093-5

  18. Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the develo** world. Global Biogeochem Cy 17(4), n/a-n/a. https://doi.org/10.1029/2002gb001952

  19. Song, Y., Chen, H., Su, Z., Chen, X., Miao, L., Zhang, J., Cheng, X., & Zhang, H. (2017). Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small. 13(39). https://doi.org/10.1002/smll.201702091.

  20. Langari MM, Antxustegi MM, Labidi J (2022) Nanocellulose-based sensing platforms for heavy metal ions detection: a comprehensive review. Chemosphere. 302(134823):1702091. https://doi.org/10.1016/j.chemosphere.2022.134823

    Article  CAS  Google Scholar 

  21. Alam AU, Deen MJ (2020) Bisphenol A electrochemical sensor using graphene oxide and beta-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal Chem 92(7):5532–5539. https://doi.org/10.1021/acs.analchem.0c00402

    Article  CAS  PubMed  Google Scholar 

  22. Molaei MJ (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478. https://doi.org/10.1016/j.talanta.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  23. Salhi O, Ez-zine T, Oularbi L, El Rhazi M (2022) Cysteine combined with carbon black as support for electrodeposition of poly (1,8-Diaminonaphthalene): application as sensing material for efficient determination of nitrite ions. Arab J Chem 15(6). https://doi.org/10.1016/j.arabjc.2022.103820

  24. Saravanan A, Kumar PS (2022) Biochar derived carbonaceous material for various environmental applications: systematic review. Environ Res 214(Pt 1):113857. https://doi.org/10.1016/j.envres.2022.113857

    Article  CAS  PubMed  Google Scholar 

  25. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R (2015) Recent advances in utilization of biochar. Renew Sust Energ Rev 42:1055–1064. https://doi.org/10.1016/j.rser.2014.10.074

    Article  CAS  Google Scholar 

  26. Placido J, Bustamante Lopez S, Meissner KE, Kelly DE, Kelly SL (2019) Multivariate analysis of biochar-derived carbonaceous nanomaterials for detection of heavy metal ions in aqueous systems. Sci Total Environ 688:751–761. https://doi.org/10.1016/j.scitotenv.2019.06.342

    Article  CAS  PubMed  Google Scholar 

  27. Bilge S, Karadurmus L, Sınağ A, Ozkan SA (2021) Green synthesis and characterization of carbon-based materials for sensitive detection of heavy metal ions. TrAC Trends Anal Chem 145. https://doi.org/10.1016/j.trac.2021.116473

  28. Mouratib R, Oularbi L, Achargui N, El Krati M, Younssi SA, Tahiri S, El Rhazi M (2022) Carbon paste electrode modified with Al- and Si-rich water treatment sludge for Bisphenol-A detection. J Environ Chem Eng. 10(4). https://doi.org/10.1016/j.jece.2022.108072

  29. Tawfik AS, Ganjar F, Adi SO (2019) Nanoparticles as components of electrochemical sensing platforms for the detection of petroleum pollutants: A review. Trends Analyt Chem 118:194–206. https://doi.org/10.1016/j.trac.2019.05.045

    Article  CAS  Google Scholar 

  30. Shetti NP, Malode SJ, Nayak DS, Bagihalli GB, Kalanur SS, Malladi RS, Reddy CV, Aminabhavi TM, Reddy KR (2019) Fabrication of ZnO nanoparticles modified sensor for electrochemical oxidation of methdilazine. Appl Surf Sci 496. https://doi.org/10.1016/j.apsusc.2019.143656

  31. Oularbi L, Turmine M, El Rhazi M (2019) Preparation of novel nanocomposite consisting of bismuth particles, polypyrrole and multi-walled carbon nanotubes for simultaneous voltammetric determination of cadmium(II) and lead(II). Synth Met 253:1–8. https://doi.org/10.1016/j.synthmet.2019.04.011

    Article  CAS  Google Scholar 

  32. Li H, Li J, Yang Z, Xu Q, Hou C, Peng J, Hu X (2011) Simultaneous determination of ultratrace lead and cadmium by square wave strip** voltammetry with in situ depositing bismuth at Nafion-medical stone doped disposable electrode. J Hazard Mater 191(1):26–31. https://doi.org/10.1016/j.jhazmat.2011.04.020

    Article  CAS  PubMed  Google Scholar 

  33. ** analysis of Pb(II), Cd(II), Hg(II) and Cu(II) based on irradiated attapulgite/Ionic liquid composites. Chem Eng J 316:383–392. https://doi.org/10.1016/j.cej.2017.01.110

    Article  CAS  Google Scholar 

  34. Chen H, Zhang Z, Cai D, Zhang S, Zhang B, Tang J, Wu Z (2011) A hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode. Talanta 86:266–270. https://doi.org/10.1016/j.talanta.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  35. Cao E, Bryant R, Williams DJA (1995) Electrochemical properties of Na–attapulgite. J Colloid Interface Sci 179:143–150. https://doi.org/10.1006/jcis.1996.0196

    Article  Google Scholar 

  36. Yi Y, Wang P, Fan G, Wang Z, Chen S, Xue T, Wen Y (2020) Hierarchically porous carbon microsphere doped with phosphorus as a high conductive electrocatalyst for oxidase-like sensors and supercapacitors. ACS Sustain Chem Eng 8(26):9937–9946. https://doi.org/10.1021/acssuschemeng.0c03978

    Article  CAS  Google Scholar 

  37. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2(6):1319–1324. https://doi.org/10.1039/a908800h

    Article  CAS  Google Scholar 

  38. Guo J, Wu D, Wang T, Ma Y (2019) P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor. Appl Surf Sci 475:56–66. https://doi.org/10.1016/j.apsusc.2018.12.095

    Article  CAS  Google Scholar 

  39. Shao B, Wang J, Liu Z, Zeng G, Tang L, Liang Q, He Q, Wu T, Liu Y, Yuan X (2020) Ti3C2Tx MXene decorated black phosphorus nanosheets with improved visible-light photocatalytic activity: experimental and theoretical studies. J Mater Chem A 8(10):5171–5185. https://doi.org/10.1039/c9ta13610j

    Article  CAS  Google Scholar 

  40. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  41. O’Hare L-A, Parbhoo B, Leadley SR (2004) Development of a methodology for XPS curve-fitting of the Si 2p core level of siloxane materials. Surf Interface Anal 36(10):1427–1434. https://doi.org/10.1002/sia.1917

    Article  CAS  Google Scholar 

  42. Xue T, Sheng Y, Xu J, Li Y, Lu X, Zhu Y, Duan X, Wen Y (2019) In-situ reduction of Ag(+) on black phosphorene and its NH(2)-MWCNT nanohybrid with high stability and dispersibility as nanozyme sensor for three ATP metabolites. Biosens Bioelectron 145:111716. https://doi.org/10.1016/j.bios.2019.111716

    Article  CAS  PubMed  Google Scholar 

  43. Di H, Yu Z, Ma Y, Li F, Lv L, Pan Y, Lin Y, Liu Y, He Y (2016) Graphene oxide decorated with Fe3O4 nanoparticles with advanced anticorrosive properties of epoxy coatings. J Taiwan Inst Chem Eng 64:244–251. https://doi.org/10.1016/j.jtice.2016.04.002

    Article  CAS  Google Scholar 

  44. Nourbakhsh A, Rahimnejad M, Asghary M, Younesi H (2022) Simultaneous electro-determination of trace copper, lead, and cadmium in tap water by using silver nanoparticles and graphene nanoplates as nanocomposite modified graphite electrode Microchem J 175. https://doi.org/10.1016/j.microc.2021.107137

  45. Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sens Actuators B Chem 216:384–393. https://doi.org/10.1016/j.snb.2015.04.058

    Article  CAS  Google Scholar 

  46. Wong A, Ferreira PA, Santos AM, Cincotto FH, Silva RAB, Sotomayor MDPT (2020) A new electrochemical sensor based on eco-friendly chemistry for the simultaneous determination of toxic trace elements. Microchem J 158. https://doi.org/10.1016/j.microc.2020.105292

  47. El Hamdouni Y, El Hajjaji S, Szabó T, Trif L, Felhősi I, Abbi K, Labjar N, Harmouche L, Shaban A (2022) Biomass valorization of walnut shell into biochar as a resource for electrochemical simultaneous detection of heavy metal ions in water and soil samples: preparation, characterization, and applications. Arab J Chem 15(11). https://doi.org/10.1016/j.arabjc.2022.104252

  48. Yu Y, Yang W, Wang H, Huang G (2022) In situ synthesis of MnMgFe-LDH on biochar for electrochemical detection and removal of Cd2+ in aqueous solution. Molecules 27(22). https://doi.org/10.3390/molecules27227875

  49. Mao D, Hu J, Duan P, Qin C, Piao Y (2022) Ultrasensitive and highly reusable electrochemical sensor with ion imprinted nanobiochar. Sens Actuators B Chem 371. https://doi.org/10.1016/j.snb.2022.132490

Download references

Funding

This work is supported by National Natural Science Foundation of China (31860191, 51962007), Major Science and Technology Research and Development Project of Jiangxi Province (20203ABC28W016), Scientific Research Key Project of Jiangxi Provincial Department of Education (GJJ160351), and Key Research and Development Projects of Jiangxi Province (201921YBKT15).

Author information

Authors and Affiliations

Authors

Contributions

Peng Huang: conceptualization, methodology, investigation, formal analysis, data curation, visualization, writing—original draft. Yao ** Wen: conceptualization, methodology, supervision, validation, resources. **aoyan Zeng and Ji Zhang: conceptualization, methodology, supervision. Peng Wang and Zongde Wang: conceptualization, methodology, investigation, supervision. Shangxing Chen: conceptualization, methodology, supervision, validation, resources, funding acquisition.

Corresponding authors

Correspondence to Yang** Wen or Shangxing Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1092 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., **ong, Y., Ge, Y. et al. Magnetic Fe3O4 nanoparticles decorated phosphorus-doped biochar-attapulgite/bismuth film electrode for smartphone-operated wireless portable sensing of ultra-trace multiple heavy metal ions. Microchim Acta 190, 94 (2023). https://doi.org/10.1007/s00604-023-05672-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05672-8

Keywords

Navigation