Log in

Colorimetric nanoplatform for visual determination of cancer cells via target-catalyzed hairpin assembly actuated aggregation of gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

According to aptamer-mediated hairpin DNA cascade amplifier and gold nanoparticles aggregation, an optical platform for cancer cells determination has been proposed. High-affinity chimeric aptamers were used for cancer cell detection and also as an initiator for beginning hairpin assembly to construct three-way junction (3WJ) nanostructures. These three hairpins were modified at 3′ ends with biotin. In the presence of target cell, chimeric aptamer binds to its ligand on cell surface and initiates 3WJ nanostructures formation. These 3WJ nanostructures interact with streptavidin-modified gold nanoparticles (AuNPs) via non-covalent biotin-streptavidin interactions and create a crossover lattice of nanoparticles. This event leads to AuNPs aggregation and red-shifting. The results were confirmed by gel electrophoresis and UV-visible spectrophotometry. The dynamic range of this assay is 25 to 107 cells with a detection limit of 10 cells which is respectively 9 and 4 times more significant than the sensitivity of AuNP-based approaches without amplification and enzyme-mediated signal amplification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang K, Fan D, Liu Y, Wang E (2015) Highly sensitive and specific colorimetric detection of cancer cells via dual-aptamer target binding strategy. Biosens Bioelectron 73:1–6. https://doi.org/10.1016/j.bios.2015.05.044

    Article  CAS  PubMed  Google Scholar 

  2. Wild CP (2019) The global cancer burden: necessity is the mother of prevention. Nat Rev Cancer 19(3):123–124. https://doi.org/10.1038/s41568-019-0110-3

    Article  CAS  PubMed  Google Scholar 

  3. Srivastava S, Koay EJ (2019) Cancer overdiagnosis: a biological challenge and clinical dilemma. 19 (6):349-358. doi:https://doi.org/10.1038/s41568-019-0142-8

  4. Ravan H (2015) Translating nucleic-acid hybridization into universal DNA-reporter sequences. TrAC Trends Anal Chem 65:97–106

    Article  CAS  Google Scholar 

  5. Pirsaheb M, Mohammadi S (2019) Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. 186 (4):231. doi:https://doi.org/10.1007/s00604-019-3338-4

  6. Liu Q, ** C, Wang Y, Fang X, Zhang X, Chen Z, Tan W (2014) Aptamer-conjugated nanomaterials for specific cancer cell recognition and targeted cancer therapy. NPG Asia Mater 6(4):e95

    Article  CAS  Google Scholar 

  7. Yang D, Hartman MR, Derrien TL, Hamada S, An D, Yancey KG, Cheng R, Ma M, Luo D (2014) DNA materials: bridging nanotechnology and biotechnology. Acc Chem Res 47(6):1902–1911

    Article  CAS  Google Scholar 

  8. Sha L, Zhang X, Wang G (2016) A label-free and enzyme-free ultra-sensitive transcription factors biosensor using DNA-templated copper nanoparticles as fluorescent indicator and hairpin DNA cascade reaction as signal amplifier. Biosens Bioelectron 82:85–92

    Article  CAS  Google Scholar 

  9. Ravan H (2016) Implementing a two-layer feed-forward catalytic DNA circuit for enzyme-free and colorimetric detection of nucleic acids. Anal Chim Acta 910:68–74

    Article  CAS  Google Scholar 

  10. Fozooni T, Ravan H, Sasan H (2017) Signal amplification technologies for the detection of nucleic acids: from cell-free analysis to live-cell imaging. Appl Biochem Biotechnol 183(4):1224–1253

    Article  CAS  Google Scholar 

  11. Feng C, Zhu J, Sun J, Jiang W, Wang L (2015) Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule. Talanta 143:101–106

    Article  CAS  Google Scholar 

  12. Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W (2013) Building fluorescent DNA nanodevices on target living cell surfaces. Angew Chem Int Ed 52(21):5490–5496

    Article  CAS  Google Scholar 

  13. Zhou G, Lin M, Song P, Chen X, Chao J, Wang L, Huang Q, Huang W, Fan C, Zuo X (2014) Multivalent capture and detection of cancer cells with DNA nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal Chem 86(15):7843–7848

    Article  CAS  Google Scholar 

  14. Jie G, Jie G (2016) Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv 6(29):24780–24785

    Article  CAS  Google Scholar 

  15. Zhang X, Chen B, He M, Wang H, Hu B (2016) Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens Bioelectron 86:736–740

    Article  CAS  Google Scholar 

  16. Yin P, Choi HM, Calvert CR, Pierce NA (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318

    Article  CAS  Google Scholar 

  17. Zhao J, **g P, Xue S, Xu W (2017) Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy. Biosens Bioelectron 87:157–163

    Article  CAS  Google Scholar 

  18. Wu Z, Fan H, Satyavolu NSR, Wang W, Lake R, Jiang JH, Lu Y (2017) Imaging endogenous metal ions in living cells using a DNAzyme–catalytic hairpin assembly probe. Angew Chem Int Ed 56(30):8721–8725

    Article  CAS  Google Scholar 

  19. Zang Y, Lei J, Ling P, Ju H (2015) Catalytic hairpin assembly-programmed porphyrin–DNA complex as photoelectrochemical initiator for DNA biosensing. Anal Chem 87(10):5430–5436

    Article  CAS  Google Scholar 

  20. Wu H, Liu Y, Wang H, Wu J, Zhu F, Zou P (2016) Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction. Biosens Bioelectron 81:303–308

    Article  CAS  Google Scholar 

  21. Song W, Zhang Q, Sun W (2015) Ultrasensitive detection of nucleic acids by template enhanced hybridization followed by rolling circle amplification and catalytic hairpin assembly. Chem Commun 51(12):2392–2395

    Article  CAS  Google Scholar 

  22. Li B, Chen X, Ellington AD (2012) Adapting enzyme-free DNA circuits to the detection of loop-mediated isothermal amplification reactions. Anal Chem 84(19):8371–8377

    Article  CAS  Google Scholar 

  23. Jiang Y, Li B, Milligan JN, Bhadra S, Ellington AD (2013) Real-time detection of isothermal amplification reactions with thermostable catalytic hairpin assembly. J Am Chem Soc 135(20):7430–7433

    Article  CAS  Google Scholar 

  24. Bi S, Yue S, Wu Q, Ye J (2016) Triggered and catalyzed self-assembly of hyperbranched DNA structures for logic operations and homogeneous CRET biosensing of microRNA. Chem Commun 52(31):5455–5458

    Article  CAS  Google Scholar 

  25. Ravan H, Amandadi M, Esmaeili-Mahani S (2017) DNA domino-based nanoscale logic circuit: a versatile strategy for ultrasensitive multiplexed analysis of nucleic acids. Anal Chem 89(11):6021–6028

    Article  CAS  Google Scholar 

  26. Zhou W, Liang W, Li X, Chai Y, Yuan R, **ang Y (2015) MicroRNA-triggered, cascaded and catalytic self-assembly of functional “DNAzyme ferris wheel” nanostructures for highly sensitive colorimetric detection of cancer cells. Nanoscale 7(19):9055–9061

    Article  CAS  Google Scholar 

  27. He H, Dai J, Duan Z, Meng Y, Zhou C, Long Y, Zheng B, Du J, Guo Y, **ao D (2016) Target-catalyzed autonomous assembly of dendrimer-like DNA nanostructures for enzyme-free and signal amplified colorimetric nucleic acids detection. Biosens Bioelectron 86:985–989

    Article  CAS  Google Scholar 

  28. Bi S, **u B, Ye J, Dong Y (2015) Target-catalyzed DNA four-way junctions for CRET imaging of microRNA, concatenated logic operations, and self-assembly of DNA nanohydrogels for targeted drug delivery. ACS Appl Mater Interfaces 7(41):23310–23319

    Article  CAS  Google Scholar 

  29. Ravan H (2016) Isothermal RNA detection through the formation of DNA concatemers containing HRP-mimicking DNAzymes on the surface of gold nanoparticles. Biosens Bioelectron 80:67–73

    Article  CAS  Google Scholar 

  30. Li X, Chen B, He M, Hu B (2019) Immunodetection and counting of circulating tumor cells (HepG2) by combining gold nanoparticle labeling, rolling circle amplification and ICP-MS detection of gold. 186 (6):344. doi:https://doi.org/10.1007/s00604-019-3476-8

  31. Zhao Y, Xu D, Tan W (2017) Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells. Integr Biol 9(3):188–205

    Article  Google Scholar 

  32. Shi K, Dou B, Yang J, Yuan R, **ang Y (2017) Target-triggered catalytic hairpin assembly and TdT-catalyzed DNA polymerization for amplified electronic detection of thrombin in human serums. Biosens Bioelectron 87:495–500

    Article  CAS  Google Scholar 

  33. Kashanian S, Rafipour R, Tarighat F, Ravan H (2012) Immobilization of cobaltferritin onto gold electrode based on self-assembled monolayers. IET Nanobiotechnol 6(3):102–109

    Article  CAS  Google Scholar 

  34. Zhang X, **ao K, Cheng L, Chen H, Liu B, Zhang S, Kong J (2014) Visual and highly sensitive detection of cancer cells by a colorimetric aptasensor based on cell-triggered cyclic enzymatic signal amplification. Anal Chem 86(11):5567–5572

    Article  CAS  Google Scholar 

  35. Ravan H, Yazdanparast R (2012) Development of a new loop-mediated isothermal amplification assay for prt (rfbS) gene to improve the identification of Salmonella serogroup D. World J Microbiol Biotechnol 28(5):2101–2106

    Article  CAS  Google Scholar 

  36. Ravan H, Amandadi M, Sanadgol N (2016) A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157: H7. Microb Pathog 91:161–165

    Article  CAS  Google Scholar 

  37. Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W (2008) Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 80(4):1067–1072

    Article  CAS  Google Scholar 

  38. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci 103(32):11838–11843

    Article  CAS  Google Scholar 

  39. Liang L, Lan F, Li L, Ge S, Yu J, Ren N, Liu H, Yan M (2016) Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification. Biosens Bioelectron 86:756–763

    Article  CAS  Google Scholar 

  40. Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83(10):3873–3880

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Shahid Bahonar University of Kerman, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Ravan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravan, H., Norouzi, A., Sanadgol, N. et al. Colorimetric nanoplatform for visual determination of cancer cells via target-catalyzed hairpin assembly actuated aggregation of gold nanoparticles. Microchim Acta 187, 392 (2020). https://doi.org/10.1007/s00604-020-04368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04368-7

Keywords

Navigation