Log in

A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrochemical aptasensor is described for the voltammetric determination of lipopolysaccharide (LPS) from Escherichia coli 055:B5. Aptamer chains were immobilized on the surface of a glassy carbon electrode (GCE) via reduced graphene oxide and gold nanoparticles (RGO/AuNPs). Fast Fourier transform infrared, X-ray diffraction and transmission electron microscopy were used to characterize the nanomaterials. Cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy were used to characterize the modified GCE. The results show that the modified electrode has a good selectivity for LPS over other biomolecules. The hexacyanoferrate redox system, typically operated at around 0.3 V (vs. Ag/AgCl) is used as an electrochemical probe. The detection limit is 30 fg·mL−1. To decrease the electrochemical potential for detection of LPS, Mg/carbon quantum dots were used as redox active media. They decrease the detection potentialto 0 V and the detection of limit (LOD) to 1 fg·mL−1. The electrode was successfully used to analyze serum of patients and healthy persons.

Schematic representation of the modification of reduced graphene oxide gold nanoparticles with aptamer chains to immobilize on the glassy carbon electrode surface for electrochemical detection of lipopolysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Miao P (2013) Electrochemical sensing strategies for the detection of endotoxin: a review. RSC Adv 3:9606–9617

    Article  CAS  Google Scholar 

  2. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975):1431–1433

    Article  CAS  Google Scholar 

  3. Opal SM, Scannon PJ, Vincent J-L, White M, Carroll SF, Palardy JE, Parejo NA, Pribble JP, Lemke JH (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 180:1584–1589

    Article  CAS  Google Scholar 

  4. Lan M, Wu J, Liu W, Zhang W, Ge J, Zhang H, Sun J, Zhao W, Wang P (2012) Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. JACS 134:6685–6694

    Article  CAS  Google Scholar 

  5. de La Lastra CA, Villegas I, Sanchez-Fidalgo S (2007) Poly (ADP-ribose) polymerase inhibitors: new pharmacological functions and potential clinical implications. Curr Pharm Des 13:933–962

    Article  Google Scholar 

  6. A-q W, Yang Q-w, J-c L, F-l L, Zhong Q, C-y C (2009) A novel lipopolysaccharide-antagonizing aptamer protects mice against endotoxemia. Biochem Biophys Res Commun 382:140–144

    Article  Google Scholar 

  7. Zhao Y, Cong L, Jaber V, Lukiw WJ (2017) Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol 8:1064

    Article  Google Scholar 

  8. Su W, Cho M, Nam JD, Choe WS, Lee Y (2013) Aptamer-assisted gold nanoparticles/PEDOT platform for ultrasensitive detection of LPS. Electroanalysis 25:380–386

    Article  CAS  Google Scholar 

  9. Sakti SP, Lucklum R, Hauptmann P, Bühling F, Ansorge S (2001) Disposable TSM-biosensor based on viscosity changes of the contacting medium. Biosens Bioelectron 16:1101–1108

    Article  CAS  Google Scholar 

  10. Wang J (2005) Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  11. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  12. Calderón K, Martín-Pascual J, Poyatos JM, Rodelas B, González-Martínez A, González-López J (2012) Comparative analysis of the bacterial diversity in a lab-scale moving bed biofilm reactor (MBBR) applied to treat urban wastewater under different operational conditions. Bioresour Technol 121:119–126

    Article  Google Scholar 

  13. Su W, Lin M, Lee H, Cho M, Choe W-S, Lee Y (2012) Determination of endotoxin through an aptamer-based impedance biosensor. Biosens Bioelectron 32:32–36

    Article  CAS  Google Scholar 

  14. Zuo M-Y, Chen L-J, Jiang H, Tan L, Luo Z-F, Wang Y-M (2014) Detecting endotoxin with a flow cytometry-based magnetic aptasensor. Anal Biochem 466:38–43

    Article  CAS  Google Scholar 

  15. Zhao W, Chiuman W, Lam JC, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y (2008) DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. JACS 130:3610–3618

    Article  CAS  Google Scholar 

  16. Anthony PC, Perez CF, García-García C, Block SM (2012) Folding energy landscape of the thiamine pyrophosphate riboswitch aptamer. PNAS USA 109:1485–1489

    Article  CAS  Google Scholar 

  17. Frieda KL, Block SM (2012) Direct observation of cotranscriptional folding in an adenine riboswitch. Science 338:397–400

    Article  CAS  Google Scholar 

  18. Xu W, Tian J, Shao X, Zhu L, Huang K, Luo Y (2017) A rapid and visual aptasensor for lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures. Biosens Bioelectron 89:795–801

    Article  CAS  Google Scholar 

  19. Bai L, Chai Y, Pu X, Yuan R (2014) A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three-way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale 6:2902–2908

    Article  CAS  Google Scholar 

  20. Chen C, **e Q, Yang D, **ao H, Fu Y, Tan Y, Yao S (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491

    Article  CAS  Google Scholar 

  21. An JH, Park SJ, Kwon OS, Bae J, Jang J (2013) High-performance flexible Graphene Aptasensor for mercury detection in mussels. ACS Nano 7:10563–10571

    Article  CAS  Google Scholar 

  22. Shen W-J, Zhuo Y, Chai Y-Q, Yuan R (2015) Cu-based metal–organic frameworks as a catalyst to construct a Ratiometric electrochemical Aptasensor for sensitive lipopolysaccharide detection. Anal Chem 87(22):11345–11352

    Article  CAS  Google Scholar 

  23. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Article  CAS  Google Scholar 

  24. Shabani Shayeh J, Nikkar A, Norouzi P, Ganjali MR, Wojdyla M (2015) Physioelectrochemical investigation of supercapacitive performance of ternary nanocomposite by common electrochemical methods and fast fourier transform voltammetry. New J Chem 39:9454–9460

    Article  Google Scholar 

  25. Shayeh JS, Ehsani A, Ganjali M, Norouzi P, Jaleh B (2015) Conductive polymer/reduced graphene oxide/au nano particles as efficient composite materials in electrochemical supercapacitors. Appl Surf Sci 353:594–599

    Article  Google Scholar 

  26. Vahidzadeh E, Fatemi S, Nouralishahi A (2018) Synthesis of a nitrogen-doped titanium dioxide–reduced graphene oxide nanocomposite for photocatalysis under visible light irradiation. Particuology 41:48–57

    Article  CAS  Google Scholar 

  27. Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. JACS 130:4256–4258

    Article  CAS  Google Scholar 

  28. Su W, Kim S-E, Cho M, Nam J-D, Choe W-S, Lee Y (2013) Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. J Innate Immun 19:388–397

    Article  Google Scholar 

  29. Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  30. Muthusankar G, Rajkumar C, Chen S-M, Karkuzhali R, Gopu G, Sangili A, Sengottuvelan N, Sankar R (2019) Sonochemical driven simple preparation of nitrogen-doped carbon quantum dots/SnO2 nanocomposite: A novel electrocatalyst for sensitive voltammetric determination of riboflavin. Sensors Actuators B Chem 281:602–612

    Article  CAS  Google Scholar 

  31. Shayeh JS, Ehsani A, Naeemy A, Shiri HM, Fatemi F, Yadegari A, Omidi M (2018) Electrosynthesis and characterization of poly aniline/garnet nanoparticles for high-performance electrochemical capacitors. Ionics 24:505–511

    Article  CAS  Google Scholar 

  32. Shayeh JS, Norouzi P, Ganjali MR (2016) Effect of thickness on the capacitive behavior and stability of ultrathin polyaniline for high speed super capacitors. Russ J Electrochem 52:933–937

    Article  CAS  Google Scholar 

  33. Shayeh JS, Salari H, Daliri A, Omidi M (2018) Decorative reduced graphene oxide/C3N4/Ag2O/conductive polymer as a high performance material for electrochemical capacitors. Appl Surf Sci 447:374–380

    Article  CAS  Google Scholar 

  34. Posha B, Nambiar SR, Sandhyarani N (2017) Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide. Biosens Bioelectron 101:199–205

    Article  Google Scholar 

  35. Kim SE, Su W, Cho M, Lee Y, Choe WS (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424:12–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Shabani Shayeh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmadadi, M., Shayeh, J.S., Omidi, M. et al. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim Acta 186, 787 (2019). https://doi.org/10.1007/s00604-019-3957-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3957-9

Keywords

Navigation