Log in

A printed SWCNT electrode modified with polycatechol and lysozyme for capacitive detection of α-lactalbumin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical sensor for the breast cancer marker α-lactalbumin (αLA). It is based on the use of printed single-walled carbon nanotube (SWCNT) electrodes that were modified with polycatechol. Impedance-derived electrochemical capacitance spectroscopy (ECS) is applied for detection at an applied potential of −0.14 V vs. Ag/AgCl reference electrode. The electrode was prepared in a two-step process. First, a dispersion of SWCNTs was drop-cast onto the surface of a poly(ethylene terephthalate) substrate to act as the working electrode. Next, catechol was electrochemically polymerized on the SWCNTs, prior to the immobilization of lysozyme. The strong interaction between lysozyme and αLA induced changes in the redox capacitance which are detected by ECS. The latter shows the device to be capable of detecting αLA in the 20 to 80 ng·mL−1 concentration range. The limit of detection is 9.7 ng·mL−1 at an S/N ratio of 3. The device was used to detect αLA in human blood serum with good recovery results.

A sensitive biosensor for αLA was prepared by modifying SWCNT electrode with polycatechol and lysozyme. The electrochemical capacitance spectroscopy was used for the first time to selectively detect αLA in the blood in the range from 20 to 80 ng·mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Sagadevan S, Periasamy M (2014) Recent trends in nanobiosensors and their applications-a review. Rev Adv Mater Sci 36:62

    Google Scholar 

  2. Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sensors Actuators B 207:690

    Article  CAS  Google Scholar 

  3. Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of nanobiosensors for healthcare. Biosens Bioelectron 70:498

    Article  CAS  Google Scholar 

  4. Jia L, Lawrence G, Balasubranian VV, Choi G, Choy JH, Abdullah AM, Elzatahry A, Ariga K, Vinu A (2015) Highly ordered nanoporous carbon films with tunable pore diameters and their excellent sensing properties. Chem Eur J 21:697

    Article  CAS  Google Scholar 

  5. DeSantis C, Ma J, Bryan L, Jemal A (2014) Breast cancer statistics, 2013. CA Cancer J Clin 64:52

    Article  Google Scholar 

  6. Hayes DF (2016) Is breast cancer a curable desease? J Oncol Practice 12:13

    Article  Google Scholar 

  7. Azimzadeh M, Rahaiea M, Nasirizadeh N, Ashtari K, Manesh HN (2016) An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron 77:99

    Article  CAS  Google Scholar 

  8. Weigel MT, Dowsett M (2010) Current and emerging biomarkers in breast cancer: prognosis and prediction. Enodcr Relat Cancer 17:245

    Article  Google Scholar 

  9. Zhang SJ, Hu Y, Qian HL, Jiao SC, Liu ZF, Tao HT, Han L (2013) Expression and significance of ER, PR, VEGF, CA15-3, CA125 and CEA in judging the prognosis of breast cancer. Asian Pac J Cancer Prev 14:3937

    Article  Google Scholar 

  10. Tabasi A, Noorbakhsh A, Sharifi S (2017) Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 95:117

    Article  CAS  Google Scholar 

  11. Botelho ACF, Ferreira MC, França JL, França EL, França ACH (2012) Breastfeeding and its relationship with reduction of breast cancer: a review. Asian Pac J Cancer Prev 13:5327

    Article  Google Scholar 

  12. Thean ET, Toh BH (1990) Serum human alpha-lactalbumin as a marker for breast cancer. Br J Cancer 61:773

    Article  CAS  Google Scholar 

  13. Nigen M, Croguennec T, Renard D, Bouhallab S (2007) Temperature affects the supramolecular structures resulting from α-lactalbumin-lysozyme interaction. Biochemistry 46:1248

    Article  CAS  Google Scholar 

  14. Qasba PK, Kumar S (1997) Molecular divergence of lysozymes and α-lactalbumin. Crit Rev Biochem Mol Biol 32:255

    Article  CAS  Google Scholar 

  15. Yang A, Zheng Y, Long C, Chen H, Liu B, Li X, Yuan J, Cheng F (2014) Fluorescent immunosorbent assay for the detection of alpha lactalbumin in dairy products with monoclonal antibody bioconjugated with CdSe/ZnS quantum dots. Food Chem 150:73

    Article  CAS  Google Scholar 

  16. Santos A, Carvalho FC, Barreira MCR, Bueno PR (2014) Impedance-derived electrochemical capacitance spectroscopy for the evaluation of lectin-glycoprotein binding affinity. Biosens Bioelectron 62:102

    Article  CAS  Google Scholar 

  17. Fernandes FCB, Santos A, Martins DC, Góes MS, Bueno PR (2014) Comparing label free electrochemical impedimetric and capacitive biosensing architectures. Biosens Bioelectron 57:96

    Article  CAS  Google Scholar 

  18. Rabti A, Martinez CCM, Pires LB, Raouafi N, Merkoçi A (2016) Ferrocene-functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:28

    Article  CAS  Google Scholar 

  19. Rabti A, Argoubi W, Raouafi N (2016) Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 183:1227

    Article  CAS  Google Scholar 

  20. Tominaga M, Sasaki A, Togami M (2016) Bioelectrocatalytic oxygen reaction and chloride inhibition resistance of laccase immobilized on single-walled carbon nanotube and carbon paper electrodes. Electrochemisry 84:315

    Article  CAS  Google Scholar 

  21. Eguílaz M, Gutierrez F, Domínguez JMG, Martínez MT, Rivas G (2016) Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors. Biosens Bioelectron 86:308

    Article  Google Scholar 

  22. Stojanović ZS, Mehmeti E, Kalcher K, Guzsvány V, Stanković DM (2016) SWCNT-modified carbon paste electrode as an electrochemical sensor for histamine determination in alcoholic beverages. Food Anal Methods 9:2701

    Article  Google Scholar 

  23. Lew W, Dai L (2010) Carbon nanotube supercapacitors. In: Marulanda JM (ed) Carbon nanotubes, 1st edn. InTech, Rijeka, pp 563–593

    Google Scholar 

  24. Adhikari BR, Schraft H, Chen A (2017) High-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst 142:2595

    Article  CAS  Google Scholar 

  25. Pagán M, Suazo D, Toro N, Griebenow K (2015) A comparative study of different protein immobilization methods for the construction of an efficient nano-structured lactate oxidase-SWCNT-biosensor. Biosens Bioelectron 64:138

    Article  Google Scholar 

  26. Snow ES, Perkins FK (2005) Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. Nano Lett 15:2414

    Article  Google Scholar 

  27. **ao H, Zhu B, Wang D, Pang Y, He L, Ma X, Wang R, ** C, Chen Y, Zhu X (2012) Photodynamic effects of chlorin e6 attached to single wall carbon nanotubes through noncovalent interactions. Carbon 50:1681

    Article  CAS  Google Scholar 

  28. Mosch HLKS, Akintola O, Plass W, Hoeppener S, Schubert US, Ignaszak A (2016) The specific surface versus electrochemically active area of the carbon/polypyrrole capacitor: the correlation of ion dynamics studied by an electrochemical quartz crystal microbalance with BET surface. Langmuir 32:4440

    Article  CAS  Google Scholar 

  29. **ong S, Wei J, Jia P, Yang L, Ma J, Lu X (2011) Water-Processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. Appl Mater Interfaces 3:782

    Article  CAS  Google Scholar 

  30. Bai J, Bo X, Qi B, Guo L (2010) A novel Polycatechol/ordered mesoporous carbon composite film modified electrode and its Electrocataly ic application. Electroanalysis 22(15):1750

    Article  CAS  Google Scholar 

  31. Sayyah SM, Khaliel AB, Azooz RE, Mohamed F (2011) Electropolymerization of some Ortho- substituted phenol derivatives on Pt-electrode from aqueous acidic solution; kinetics, Mechanism, electrochemical studies and characterization of the polymer obtained. In: Balcerzak ES (ed) Electropolymerization. InTech, Rijeka, pp 1–53. isbn:978-953-307-693-5

  32. Marczewska B, Przegalinski M (2013) Poly(catechol) electroactive film and its electrochemical properties. Synth Met 182:33

    Article  CAS  Google Scholar 

  33. Kristiansen A, Vårum KM, Grasdalen H (1998) The interactions between highly de-N-acetylated chitosans and lysozyme from chicken egg white studied by 1H-NMR spectroscopy. Eur J Biochem 251:335

    Article  CAS  Google Scholar 

  34. Fukamizo T, Yamaguchi T, Araki T, Torikata T, Kristiansen A, Vårum KM (2001) Binding of a highly de-N-acetylated chitosan to Japanese Pheasan lysozyme as measured by 1H-NMR spectroscopy. Biosci Biotechnol Biochem 65:1766

    Article  CAS  Google Scholar 

  35. Fernandes FCB, Góes MS, Davis JJ, Bueno PR (2013) Label free redox capacitive biosensing. Biosens Bioelectron 50:437

    Article  CAS  Google Scholar 

  36. Lehr J, Fernandes FCB, Bueno PR, Davis JJ (2014) Label-free capacitive diagnostics: exploiting local redox probe state occupancy. Anal Chem 86:2559

    Article  CAS  Google Scholar 

  37. Nigen M, Croguennec T, Bouhallab S (2009) Formation and stability of α-lactalbumin-lysozyme spherical particles: involvement of electrostatic forces. Food Hydrocoll 23:510

    Article  CAS  Google Scholar 

  38. Nigen M, Gaillard C, Croguennec T, Madec M-N, Bouhallab S (2010) Dynamic and supramolecular organization of α-lactalbumin/lysozyme microspheres: microscopic study. Biophys Chem 146:30

    Article  CAS  Google Scholar 

  39. Bueno PR, Davis JJ (2012) Elucidating redox-level dispersion and local dielectric effects within electroactive molecular films. Anal Chem 86:1997

    Article  Google Scholar 

  40. Bueno PR, Mizzon G, Davis JJ (2012) Capacitance spectroscopy: a versatile approach to resolving the redox density of states and kinetics in redox-active self-assembled monolayers. J Phys Chem B 116:8822

    Article  CAS  Google Scholar 

  41. Tao C, Zhang Q, Feng N, Shi D, Liu B (2016) Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human a-lactalbumin in genetically modified cow milk. J Dairy Sci 99:1773

    Article  CAS  Google Scholar 

  42. Montiel VRV, Campuzano S, Rodríguez RMT, Reviejo AJ, **arrón JM (2016) Electrochemical magnetic beads-based immunosensing for the determination of α-lactalbumin in milk. Food Chem 213:595

    Article  Google Scholar 

  43. Conrado LS, Veredas V, Nóbrega ES, Santana CC (2005) Concentration of α-lactalbumin from cow milk whey through expanded bed adsorption using a hydrophobic resin. Baz J Chem Eng 22:501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Tunisian Ministry of Higher Education and Scientific Research (for LCAE-LR99ES15 lab) and the mobility “Bourse d’Alternance” grant from the University of Tunis El Manar awarded to AR. ANEC (ISP-funded network) is also acknowledged for the mobility grant to AR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Raouafi.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raouafi, A., Rabti, A. & Raouafi, N. A printed SWCNT electrode modified with polycatechol and lysozyme for capacitive detection of α-lactalbumin. Microchim Acta 184, 4351–4357 (2017). https://doi.org/10.1007/s00604-017-2481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2481-z

Keywords

Navigation