Log in

Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 196 refs.) covers the state of the art in electrochemical and optical immunoassays for the carcinoembryonic antigen (CEA). In essence, it has sections on (a) frequently applied principles and types of CEA immunoassays; (b) aspects of sensor fabrication including immunological and immobilization procedures and the proper choice of nanomaterials; (c) electrochemical immunoassays, with subsections on assays based on the use of nanoparticles and other nanomaterials (such as conducting polymers and graphenes); (d) optical immunoassays based on the use of nanoparticles such as quantum dots, gold nanoparticles, upconversion nanoparticles, graphenes and their derivatives; (d) lateral flow and lab-on-a-chip (microfluidic) immunoassays; and (e) on multiplexed electrochemical and optical immunoassays with and without labels. Examples for applications to real samples are given. A final section discusses current limitations and trends in terms of sensing schemes and nanomaterials. 

A key to develop nanodevices with high performance for immunoassay applications is to explore advanced functional nanomaterials. This review focus on practical aspects trying to give the readers useful insights that should be considered such as the choice of the advanced nanomaterials to be used, the best methods/techniques in immunesensing of CEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11

Similar content being viewed by others

References

  1. Jiang W, Yuan R, Chai Y, Mao L, Su H (2011) A novel electrochemical immunoassay based on diazotization-coupled functionalized bioconjugates as trace labels for ultrasensitive detection of carcinoembryonic antigen. Biosens Bioelectron 26:2786

    Article  CAS  Google Scholar 

  2. Goldman R, Ressom HW, Varghese RS, Goldman L, Bascug G, Loffredo CA, Abdel-Hamid M, Gouda I, Ezzat S, Kyselova Z (2009) Detection of hepatocellular carcinoma using glycomic analysis. J Clinical Cancer Research 15:1808

    Article  CAS  Google Scholar 

  3. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. J Nature Reviews Cancer 5:161

    Article  CAS  Google Scholar 

  4. Wang Y, Li X, Cao W, Li Y, Li H, Du B, Wei Q (2014) Ultrasensitive sandwich-type electrochemical immunosensor based on a novel signal amplification strategy using highly loaded toluidine blue/gold nanoparticles decorated KIT-6/carboxymethyl chitosan/ionic liquids as signal labels. Biosens Bioelectron 61:618

    Article  CAS  Google Scholar 

  5. Taylor DD (1985) Black PH inhibition of macrophage Ia antigen expression by shed plasma membrane vesicles from metastatic murine melanoma lines. J Natl Cancer Inst 74:859

    CAS  Google Scholar 

  6. Hammarstrom S, Engvall E, Johansson BG, Svensson S, Sundblad G, Goldstein IJ (1975) Nature of the tumor-associated determinant(s) of carcinoembryonic antigen. Proc Natl Acad Sci U S A 72:1528

    Article  CAS  Google Scholar 

  7. Garcia M, Seigner C, Bastid C, Choux R, Payan M, Reggio H (1991) Carcinoembryonic antigen has a different molecular weight in normal colon and in cancer cells due to N-glycosylation differences. Cancer Res 51:5679

    CAS  Google Scholar 

  8. Ballesta AM, Molina R, Filella X, Jo J, Gimenez N (1995) Carcinoembryonic antigen in staging and follow-up of patients with solid tumors. Tumour Biol 16:32

    Article  CAS  Google Scholar 

  9. Wild D, Kodak E (2013) The immunoassay handbook, fourth edn. Elsevier Ltd., Amsterdam

    Google Scholar 

  10. Keegan J, O’Kennedy R, Crooks S, Elliott C, Brandon D, Danaher M (2011) Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor. Anal Chim Acta 700:41

    Article  CAS  Google Scholar 

  11. Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors-principles and applications to clinical chemistry. Clin Chim Acta 314:1

    Article  CAS  Google Scholar 

  12. Zhang B, Mao Q, Zhang X, Jiang T, Chen M, Yu F, Fu W (2004) A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosens Bioelectron 19:711

    Article  CAS  Google Scholar 

  13. Tuzhi P, Fangmeng Z, Liju Y, Qiaohong H, Qiong C (1998) Potentiometric determination of α-fetoprotein (AFP) using a non-labeled antibody immunosensor. Chinese J Appl Chem 1:1

    Google Scholar 

  14. Darain F, Park SU, Shim YB (2003) Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens Bioelectron 18:773

    Article  CAS  Google Scholar 

  15. Alfonta L, Willner I, Throckmorton DJ, Singh AK (2001) Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Anal Chem 73:5287

    Article  CAS  Google Scholar 

  16. Yamamoto N, Nagasawa Y, Sawai M, Sudo T, Tsubomura H (1978) Potentiometric investigations of antigenantibody and enzyme-enzyme inhibitor reactions using chemically modified metal electrodes. J Immunol Methods 22:309

    Article  CAS  Google Scholar 

  17. Suwansaard S, Kanatharana P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Thavarungkul P (2009) Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Biosens Bioelectron 24:3436

    Article  CAS  Google Scholar 

  18. Liu YL, Male KB, Bouvrette P, Luong JHT (2003) Control of the size and distribution of gold nanoparticles by unmodified Cyclodextrins. Chem Mater 15:4172

    Article  CAS  Google Scholar 

  19. Li CZ, Liu Y, Luong JHT (2005) Impedance sensing of DNA binding drugs using gold substrates modified with gold nanoparticles. Anal Chem 77:478

    Article  CAS  Google Scholar 

  20. Majid E, Hrapovic S, Liu Y, Male KB, Luong JHT (2006) Electrochemical determination of arsenite using a gold nanoparticle modified glassy carbon electrode and flow analysis. Anal Chem 78:762

    Article  CAS  Google Scholar 

  21. Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119:142

    Article  CAS  Google Scholar 

  22. Sato K, Tokeshi M, Kimura H, Kitamori T (2016) Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoassay in a microchip for cancer diagnosis. Anal Chem 73:1213

    Article  CAS  Google Scholar 

  23. Rousserie G, Grinevich R, Brazhnik K, Desrumeaux KE, Reveil B, Tabary T, Chames P, Baty D, Cohen JHM, Nabiev I, Sukhanova A (2015) Detection of carcinoembryonic antigen using single-domain or full-size antibodies stained with quantum dot conjugates. Anal Biochem 478:26

    Article  CAS  Google Scholar 

  24. Chen LL, Zhang ZJ, Zhang P, Zhang XM, Fu AH (2011) An ultra-sensitive chemiluminescence immunosensor of carcinoembryonic antigen using HRP-functionalized mesoporous silica nanoparticles as labels. Sensors Actuators B Chem 155:557

    Article  CAS  Google Scholar 

  25. Li M, Cushing SK, Zhang JM, Suri S, Evans R, Petros WP, Gibson LF, Ma DL, Liu YX, Wu NQ (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7:4967

    Article  CAS  Google Scholar 

  26. Huang KJ, Niu DJ, **e WZ, Wang W (2010) A disposable electrochemical immunosensor for carcinoembryonic antigen based on nano-Au/multi-walled carbon nanotubes-chitosans nanocomposite film modified glassy carbon electrode. Anal Chim Acta 659:102

    Article  CAS  Google Scholar 

  27. Liu JY, Wang J, Wang TS, Li D, ** FN, Wang J, Wang EK (2015) Three-dimensional electrochemical immunosensor for sensitive detection of carcinoembryonic antigen based on monolithic and macroporous graphene foam. Biosens Bioelectron 65:281

    Article  CAS  Google Scholar 

  28. Gao J, Guo ZK, Su FJ, Gao L, Pang XH, Cao W, Du B, Wei Q (2015) Ultrasensitive electrochemical immunoassay for CEA through host-guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core-shell nanoparticles with adamantine-modified antibody. Biosens Bioelectron 63:465

    Article  CAS  Google Scholar 

  29. Xu T, Jia XL, Chen X, Ma ZF (2014) Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens Bioelectron 56:174

    Article  CAS  Google Scholar 

  30. Zhao CR, Wu J, Ju HX, Yan F (2014) Multiplexed electrochemical immunoassay using streptavidin/nanogold/carbon nanohorn as a signal tag to induce silver deposition. Anal Chim Acta 84:737

    Google Scholar 

  31. Su B, Tang DP, Jang T, Cui YL, Chen GN (2011) Multiarmed star-like platinum nanowires with multienzyme assembly for direct electronic determination of carcinoembryoninc antigen in serum. Biosens Bioelectron 30:229

    Article  CAS  Google Scholar 

  32. Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39:226

    Article  CAS  Google Scholar 

  33. Lu WB, Ge J, Tao L, Cao XW, Dong J, Qian WP (2014) Large-scale synthesis of ultrathin Au-Pt nanowires assembled on thionine/graphene with high conductivity and sensitivity for electrochemical immunosensor. Electrochim Acta 130:335

    Article  CAS  Google Scholar 

  34. Hasanzadeh M, Shadjou N, Eskandani M, de la Guardia M, Omidinia E (2013) Electrochemical nano-immunosensing of effective cardiac biomarkers for acute myocardial infarction. TrAC Trends Anal Chem 49:20

    Article  CAS  Google Scholar 

  35. Hasanzadeh M, Shadjou N, de la Guardia M, Eskandani M, Sheikhzadeh P (2012) Mesoporous silica-based materials for use in biosensors. TrAC Trends Anal Chem 33:117

    Article  CAS  Google Scholar 

  36. Hasanzadeh M, Shadjou N, Eskandani M, de la Guardia M (2012) Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. TrAC Trends Anal Chem 40:106

    Article  CAS  Google Scholar 

  37. Liu GD, Yan JT, Shen GL, Yu RQ (2001) Renewable amperometric immunosensor for complement 3 (C 3) assay in human serum. Sensors Actuators B Chem 80:95

    Article  CAS  Google Scholar 

  38. Vetcha S, Abdel-Hamid I, Atanasov P, Ivnitski D, Wilkins E, Hjelle B (2000) Portable immunosensor for the fast amperometric detection of anti-hantavirus antibodies. Electroanalysis 12:1034

    Article  CAS  Google Scholar 

  39. Hasanzadeh M, Bahrami A, Alizadeh M, Shadjou N (2013) Magnetic nanoparticles loaded on mobile crystalline material-41: preparation, characterization and application as a novel material for the construction of an electrochemical nanosensor. RSC Adv 3:24237

    Article  CAS  Google Scholar 

  40. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7

    Article  CAS  Google Scholar 

  41. Solanki PR, Kaushik A, Agrawal VV, Malhotra BD (2011) Nanostructured metal oxide-based biosensors. NPG Asia Mater 3:17

    Article  Google Scholar 

  42. Ghosh SK, Kang J, Inokuchi M, Toshima N (2013) Solvent-mediated synthesis, characterization and electrocatalytic activity of hydrophilic and dispersive Au-Mn3O4 nanocomposites. Appl Catal A Gen 464-465:225

    Article  CAS  Google Scholar 

  43. Wang ZH, Yuan LX, Shao QG, Huang F, Huang YH (2012) Mn3O4 nanocrystals anchored on multi-walled carbon nanotubes as high-performance anode. Mater Lett 80:110

    Article  CAS  Google Scholar 

  44. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) A novel chemical synthesis of Mn3O4 thin film and its stepwise conversion into birnessite MnO2 during super capacitive studies. J Electroanal Chem 647:60

    Article  CAS  Google Scholar 

  45. Li L, Liang J, Kang H, Fang J, Luo M, ** X (2012) TEA-assisted synthesis of single-crystalline Mn3O4 octahedrons and their magnetic. Appl Surf Sci 261:717

    Article  CAS  Google Scholar 

  46. Li L, Seng KH, Liu H, Nevirkovets IP, Guo Z (2013) Synthesis of Mn3O4-anchored graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behavior. Electrochim Acta 87:801

    Article  CAS  Google Scholar 

  47. Li WT, Wang Y, Deng FF, Liu LL, Nan HJ, Li H (2015) Electrochemical immunosensor for carcinoembryonic antigen detection based on Mo-Mn3O4/MWCNTs/chits nanocomposite modified ITO electrode. Nano 10:1550111

    Article  CAS  Google Scholar 

  48. Tan Y, Xue X, Peng Q, Zhao H, Wang T, Li Y (2007) Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett 7:3723

    Article  CAS  Google Scholar 

  49. Liu GZ, Guo WQ, Song DD (2014) A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides. Biosens Bioelectron 52:360

    Article  CAS  Google Scholar 

  50. Feng TT, Qiao XW, Wang HN, Sun Z, Qi Y, Hong CL (2016) An electrochemical immunosensor for simultaneous point-of-care cancer markers based on the host–guest inclusion of ß-cyclodextrin–graphene oxide. J Mater Chem B 4:990

    Article  CAS  Google Scholar 

  51. Feng DX, Li LH, Zhao JQ, Zhang YZ (2015) Simultaneous electrochemical detection of multiple biomarkers using gold nanoparticles decorated multiwall carbon nanotubes as signal enhancers. Anal Biochem 482:48

    Article  CAS  Google Scholar 

  52. Lai WQ, Zhuang JY, Tang J, Chen GN, Tang DP (2012) One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178:357

    Article  CAS  Google Scholar 

  53. Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182:719

    Article  CAS  Google Scholar 

  54. Pandey B, Demchenko AV, Stine KJ (2012) Nanoporous gold as a solid support for protein immobilization and development of an electrochemical immunoassay for prostate specific antigen and carcinoembryonic antigen. Microchim Acta 179:71

    Article  CAS  Google Scholar 

  55. Yuan L, Hua X, Wu YF, Pan XH, Liu SQ (2011) Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem 83:6800

    Article  CAS  Google Scholar 

  56. Singh V, Krishnan S (2015) Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes. Anal Chem 87:2648

    Article  CAS  Google Scholar 

  57. Qian J, Dai HC, Pan XH, Liu SQ (2011) Simultaneous detection of dual proteins using quantum dots coated silica nanoparticles as labels. Biosens Bioelectron 28:314

    Article  CAS  Google Scholar 

  58. Zhang XY, Ren X, Cao W, Li YY, Du B, Wei Q (2014) Simultaneous electrochemical immunosensor based on water-soluble polythiophene derivative and functionalized magnetic material. Anal Chim Acta 845:85

    Article  CAS  Google Scholar 

  59. Du D, Zou ZX, Shin YS, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin YH (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989

    Article  CAS  Google Scholar 

  60. Cui RG, Zhu JJ (2010) Fabrication of a novel electrochemical immunosensor based on the gold nanoparticles/colloidal carbon nanosphere hybrid material. Electrochim Acta 55:7814

    Article  CAS  Google Scholar 

  61. Xu T, Liu N, Yuan J, Ma ZF (2015) Triple tumor markers assay based on carbon-gold nanocomposite. Biosens Bioelectron 70:161

    Article  CAS  Google Scholar 

  62. Zhu Q, Chai YQ, Yuan R, Zhuo Y, Han J, Li Y, Liao N (2013) Amperometric immunosensor for simultaneous detection of three analytes in one interface using dual functionalized grapheme sheets integrated with redox-probes as tracer matrixes. Biosens Bioelectron 43:440

    Article  CAS  Google Scholar 

  63. Han J, Zhuo Y, Chai YQ, Yuan R, Zhang W, Zhu Q (2012) Simultaneous electrochemical detection of multiple tumor markers based on dual catalysis amplification of multi-functionalized onion-like mesoporous graphene sheets. Anal Chim Acta 746:70

    Article  CAS  Google Scholar 

  64. Shi JJ, He TT, Jiang F, Abdel-Halim ES, Zhu JJ (2014) Ultrasensitive multianalyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6. Biosens Bioelectron 55:51

    Article  CAS  Google Scholar 

  65. Feng DX, Li LH, Han XW, Fang X, Li XZ, Zhang YZ (2014) Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sensors Actuators B 201:360

    Article  CAS  Google Scholar 

  66. Li L, Feng D, Zhang Y (2016) Simultaneous detection of two tumor markers using silver and gold nanoparticles decorated carbon nanospheres as labels. Anal Biochem 505:59

    Article  CAS  Google Scholar 

  67. Jia XL, Chen X, Han JM, Ma J, Ma ZF (2014) Triple signal amplification using gold nanoparticles, bienzyme, and platinum nanoparticles functionalized grapheme as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron 53:65

    Article  CAS  Google Scholar 

  68. Zhao JQ, Guo ZL, Feng DX, Guo JJ, Wang JC, Zhang YZ (2015) Simultaneous electrochemical immunosensing of α-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with azure a or ferrocenecarboxylic acid. Microchim Acta 182:2435

    Article  CAS  Google Scholar 

  69. Castro Neto AH, Guinea F, Peres NMR (2006) Drawing conclusions from graphene. Phys World 19:33

    Article  CAS  Google Scholar 

  70. Pinto AM, Goncalves IC, Magalhaesa FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B: Biointerfaces 111:188

    Article  CAS  Google Scholar 

  71. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y (2012) Wetting transparency of graphene. Nat Mater 11:217

    Article  CAS  Google Scholar 

  72. Alwarappan S, Erdem A, Liu C, Li CZ (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113:8853

    Article  CAS  Google Scholar 

  73. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603

    Article  CAS  Google Scholar 

  74. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934

    Article  CAS  Google Scholar 

  75. Tani A, Thomson AJ, Butt JN (2001) Methylene blue as an electrochemical discriminator of single- and double-stranded oligonucleotides immobilised on gold substrates. Analyst 126:1756

    Article  CAS  Google Scholar 

  76. Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813

    Article  CAS  Google Scholar 

  77. Pheeney CG, Barton JK (2012) DNA electrochemistry with tethered methylene blue. Langmuir 28:7063

    Article  CAS  Google Scholar 

  78. Li Y, Yang WK, Fan MQ, Liu A (2011) A sensitive label-free amperometric CEA immunosensor based on graphene-Nafion nanocomposite film as an enhanced sensing platform. Anal Sci 27:727

    Article  CAS  Google Scholar 

  79. Ricci F, Adornetto G, Palleschi G (2012) A review of experimental aspects of electrochemical immunosensors. Electrochim Acta 84:74

    Article  CAS  Google Scholar 

  80. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  81. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87

    Article  CAS  Google Scholar 

  82. Fatoni A, Numnuam A, Kanatharana P, Limbut W, Thavarungkul P (2014) A conductive porous structured chitosan-grafted polyaniline cryogel for use as a sialic acid biosensor. Electrochim Acta 130:296

    Article  CAS  Google Scholar 

  83. Samanmana S, Numnuama A, Limbuta W, Kanatharanaa P, Thavarungku P (2015) Highly-sensitive label-free electrochemical carcinoembryonic antigen immunosensor based on a novel Au nanoparticles-graphene-chitosan nanocomposite cryogel electrode. Anal Chim Acta 853:521

    Article  CAS  Google Scholar 

  84. Han J, Ma J, Ma Z (2013) One-step synthesis of graphene oxide-thionine-Au nanocomposites and its application for electrochemical immunosensing. Biosens Bioelectron 47:243

    Article  CAS  Google Scholar 

  85. Xu TS, Li XY, **e ZH, Li XG, Zhang HY (2015) Poly(o-phenylenediamine) nanosphere-conjugated capture antibody immobilized on a glassy carbon electrode for electrochemical immunoassay of carcinoembryonic antigen. Microchimica Acta 182: 2541

  86. Song Z, Yuan R, Chai Y, Yin B, Fu P, Wang J (2010) Multilayer structured amperometric immunosensor based on gold nanoparticles and Prussian blue nanoparticles/nanocomposite functionalized interface

  87. Zhuo Y, Yu R, Yuan R, Chai Y, Hong C (2009) Enhancement of carcinoembryonic antibody immobilization on gold electrode modified by gold nanoparticles and SiO2/thionine nanocomposite. J Electroanal Chem 628:90

    Article  CAS  Google Scholar 

  88. He X, Yuan R, Chai Y, Shi Y (2008) A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. Biochem Biophys Methods 70:823

    Article  CAS  Google Scholar 

  89. Yuan YR, Yuan R, Chai YQ, Zhuo Y, Miao XM (2009) Electrochemical amperometric immunoassay for carcinoembryonic antigen based on bi-layer nano-Au and nickel hexacyanoferrates nanoparticles modified glassy carbon electrode. J Electroanal Chem 626:6

    Article  CAS  Google Scholar 

  90. Sun X, Ma Z (2012) Highly stable electrochemical immunosensor for carcinoembryonic antigen. Biosens Bioelectron 35:470

    Article  CAS  Google Scholar 

  91. Liu Z, Ma Z (2013) Fabrication of an ultrasensitive electrochemical immunosensor for CEA based on conducting long-chain polythiols. Biosens Bioelectron 46:1

    Article  CAS  Google Scholar 

  92. Liu N, Chen X, Ma Z (2013) Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 48:33

    Article  CAS  Google Scholar 

  93. Zhou J, Du L, Zou L, Zou Y, Hu N, Wang P (2014) An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A-Au nanoparticle modified gold electrode. Sensors Actuators B Chem 197:220

    Article  CAS  Google Scholar 

  94. Kong FY, Xu MT, Xu JJ, Chen HY (2011) A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode. Talanta 85:2620

    Article  CAS  Google Scholar 

  95. Wang H, Li H, Zhang Y, Wei Q (2014) Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of α-fetoprotein. Biosens Bioelectron 53:305

    Article  CAS  Google Scholar 

  96. Haddour N, Chauvin J, Gondran C, Cosnier S (2006) Photoelectrochemical immunosensor for label-free detection and quantification of anti-cholera toxin antibody. J Am Chem Soc 128:9693

    Article  CAS  Google Scholar 

  97. Ensafi A, Ahmadi Z, Jafari-Asl M (2015) Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide. Electrochim Acta 173:619

    Article  CAS  Google Scholar 

  98. Gao Y, Hu G, Zhang W (2011) Pep interaction intercalation of layered carbon materials with metallocene. Dalton Trans 40:4542

    Article  CAS  Google Scholar 

  99. Li R, Zhang J, Wang Z, Li Z, Liu J, Gu Z, Wang G (2015) Novel graphene gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sensors Actuators B Chem 208:421

    Article  CAS  Google Scholar 

  100. Gao YS, Zhu XF, Xu JK, Lu LM, Wang WM, Yang TT, **ng HK, Yu YF (2016) Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection. Anal Biochem 500:80

    Article  CAS  Google Scholar 

  101. Kong F, Xu B, Du Y, Xu J, Chen H (2013) A branched electrode based electrochemical platform: towards new label-free and reagentless simultaneous detection of two biomarkers. Chem Commun 49:1052

    Article  CAS  Google Scholar 

  102. Gao X, Zhang Y, Wu Q, Chen H, Chen Z, Lin X (2011) One step electrochemically deposited nanocomposite film of chitosan-carbon nanotubes-gold nanoparticles for carcinoembryonic antigen immunosensor application. Talanta 85:1980

    Article  CAS  Google Scholar 

  103. Wu W, Yi P, He P, **g T, Liao K, Yang K, Wang H (2010) Nanosilver-doped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies. Anal Chim Acta 673:126

    Article  CAS  Google Scholar 

  104. Li G, Xue Q, Feng J, Sui W (2015) Electrochemical biosensor based on nanocomposites film of thiol graphene-thiol chitosan/Nano gold for the detection of carcinoembryonic antigen. Electroanalysis 27:1245

    Article  CAS  Google Scholar 

  105. Wang X, Zhou M, Zhu Y, Miao J, Mao C, Shen J (2013) Preparation of a novel immunosensor for tumor biomarker detection based on ATRP technique. J Mater Chem B 1:2132

    Article  CAS  Google Scholar 

  106. Huang J, Tian J, Zhao Y, Zhao S (2015) Ag/Au nanoparticles coated graphene electrochemical sensor for ultrasensitive analysis of carcinoembryonic antigen in clinical immunoassay. Sensors Actuators B Chem 206:570

    Article  CAS  Google Scholar 

  107. Feng D, Lu X, Dong X, Ling Y, Zhang Y (2013) Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles. Microchim Acta 180:767

    Article  CAS  Google Scholar 

  108. Sun X, Ma Z (2013) Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal Chim Acta 780:95

    Article  CAS  Google Scholar 

  109. Sun GQ, Ding YN, Ma C, Zhang Y, Ge SG, Yu JH, Song XQ (2014) Paper-based electrochemical immunosensor for carcinoembryonic antigen based on three dimensional flower-like gold electrode and gold-silver bimetallic nanoparticles. Electrochim Acta 147:650

    Article  CAS  Google Scholar 

  110. Zhu L, Xu L, Jia N, Huang B, Tan L, Yang S, Yao S (2013) Electrochemical immunoassay for carcinoembryonic antigen using gold nanoparticle-graphene composite modified glassy carbon electrode. Talanta 116:809

    Article  CAS  Google Scholar 

  111. Huang KJ, Wu ZW, Wu YY, Liu YM (2012) Electrochemical immunoassay of carcinoembryonic antigen based on TiO2- graphene / thionine / gold nanoparticles composite. Can J Chem 90:608

    Article  CAS  Google Scholar 

  112. Bentzen SM, Buffa FM, Wilson GD (2008) Multiple biomarker tissue microarrays: bioinformatics and practical approaches. Wilson Cancer Metastasis Rev 27:481

    Article  CAS  Google Scholar 

  113. Zong C, Wu J, Xu J, Ju HX (2013) Multilayer hemin/G-quadruplex wrapped gold nanoparticles as tag for ultrasensitive multiplex immunoassay by chemiluminescence imaging. Biosens Bioelectron 43:372

    Article  CAS  Google Scholar 

  114. Chen X, Jia X, Han J, Ma J, Ma Z (2013) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens Bioelectron 50:356

    Article  CAS  Google Scholar 

  115. Mu Z, Jiao L, Wei Q, Li H (2016) Ternary Pt@Pd@Ru nanodendrite-decorated graphene oxide for sensitive electrochemical immunoassy of CEA. RSC Adv 6:42994

    Article  CAS  Google Scholar 

  116. Iqbal SS, Mayo MW, Bruno JG, Bronk BV, Batt CA, Chambers JP (2000) A review of molecular recognition technologies for detection of biological threat agents. Biosens Bioelectron 15:549

    Article  CAS  Google Scholar 

  117. Zhao L, Li C, Qi H, Gao Q, Zhang C (2016) Electrochemical lectin-based biosensor array for detection and discrimination of carcinoembryonic antigen using dual amplification of gold nanoparticles and horseradish peroxidase. Sensors Actuators B Chem 235:575

    Article  CAS  Google Scholar 

  118. Park JW, Na W, Jang J (2016) One-pot synthesis of multidimensional conducting polymer nanotubes for superior performance field-effect transistor-type carcinoembryonic antigen biosensors. RSC Adv 6:14335

    Article  CAS  Google Scholar 

  119. Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park G, **e Y, Bae S, Henary M, Frangioni JV (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31:148

    Article  CAS  Google Scholar 

  120. Ooyama HE, Ide T, Yamasaki H, Harada A, Nagahama Y, Ono A, Yoshida K (2012) Photophysical properties and photostability of novel symmetric polycyclicphenazine-type fluorescent dyes and the dye-doped films. Dyes Pigments 94:103

    Article  CAS  Google Scholar 

  121. Saito K, Chang YF, Horikawa K, Hatsugai N, Higuchi Y, Hashida M, Yoshida Y, Matsuda T, Arai Y, Nagai T (2012) Luminescent proteins for high-speed single-cell and whole-body imaging. Nat Commun 3:1262

    Article  CAS  Google Scholar 

  122. Zheng D, **ong J, Guo P, Li Y, Wang S, Gu H (2014) Detection of a carcinoembryonic antigen using aptamer-modified film bulk acoustic resonators. Mater Res Bull 59:411

    Article  CAS  Google Scholar 

  123. Guha S, Roy S, Banerjee A (2011) Fluorescent Au@Ag core-shell nanoparticles with controlled shell thickness and HgII sensing. Langmuir 27:13198

    Article  CAS  Google Scholar 

  124. Dong P, Lin Y, Deng J, Di J (2013) Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors, ACS applied mater. Interfaces 5:2392

    CAS  Google Scholar 

  125. Miao X, Zou S, Zhang H, Ling L (2014) Highly sensitive carcinoembryonic antigen detection using Ag@Au core-shell nanoparticles and dynamic light scattering. Sensors Actuators B Chem 191:396

    Article  CAS  Google Scholar 

  126. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577

    Article  CAS  Google Scholar 

  127. Shi W, Zhang X, He S, Huang Y (2011) CoFe2O4 magnetic nanoparticles as a peroxidase mimic mediated chemiluminescence for hydrogen peroxide and glucose. Chem Commun 47:10785

    Article  CAS  Google Scholar 

  128. Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed Eng 48:2308

    Article  CAS  Google Scholar 

  129. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, Schröder Werner H-C, Müller EG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501

    Article  CAS  Google Scholar 

  130. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215

    Article  CAS  Google Scholar 

  131. Cheng Y, Yuan R, Chai Y, Niu H, Cao Y, Liu H, Bai L, Yuan Y (2012) Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal Chim Acta 745:137

    Article  CAS  Google Scholar 

  132. Achatz DE, Ali R, Wolfbeis OS (2011) Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. In: Prodi L, Montalti M, Zaccheroni N (eds) Luminescence applied in sensor science. Springer, Berlin, p 29

    Google Scholar 

  133. Huang Z, Li X, Mahboub M, Hanson KM, Nichols VM, Le H, Tang ML, Bardeen CJ (2015) Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett 15:5552

    Article  CAS  Google Scholar 

  134. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139

    Article  CAS  Google Scholar 

  135. **e L, Qin Y, Chen HY (2012) Polymeric optodes based on upconverting nanorods for fluorescent measurements of pH and metal ions in blood samples. Anal Chem 84:1969

    Article  CAS  Google Scholar 

  136. Kwon OS, Song HS, Conde J, Kim HI, Artzi N, Kim JH (2016) Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano 10:1512

    Article  CAS  Google Scholar 

  137. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14:582

    Article  CAS  Google Scholar 

  138. Wu Z, Li H, Liu Z (2015) An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer. Sensors Actuators B Chem 206:531

    Article  CAS  Google Scholar 

  139. Cheng ZH, Li G, Liu MM (2015) Metal-enhanced fluorescence effect of Ag and Au nanoparticles modified with rhodamine derivative in detecting Hg2+. Sensors Actuators B Chem 212:495

    Article  CAS  Google Scholar 

  140. Zhang F, Zhu J, Li JJ, Zhao JW (2013) Improve the fluorescence quenching efficiency of gold nanorod by silver coating. Appl Phys Lett 103:193703

    Article  CAS  Google Scholar 

  141. Jian Z, **g-Fei W, Jian-Jun L, Jun-Wu Z (2016) Tuning the fluorescence quenching properties of plasmonic Ag-coated-Au triangular nanoplates: application in ultrasensitive detection of CEA. Plasmonics 11:565

    Article  CAS  Google Scholar 

  142. Liu Y, Liu CY, Liu Y (2011) Investigation on fluorescence quenching of dyes by graphite oxide and graphene. Appl Surf Sci 257:5513

    Article  CAS  Google Scholar 

  143. Li S, Aphale AN, Macwan IG, Patra PK, Gonzalez WG, Miksovska J, Leblanc RM (2012) Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins. ACS Appl Mater Interfaces 4:7069

    Article  CAS  Google Scholar 

  144. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015

    Article  CAS  Google Scholar 

  145. Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129:054703

    Article  CAS  Google Scholar 

  146. Bai YF, Xu TB, Luong JH, Cui H, Cui F (2014) Direct electron transfer of glucose oxidase-boron doped diamond Interface: a new solution for a classical problem. Anal Chem 86:4910

    Article  CAS  Google Scholar 

  147. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747

    Article  CAS  Google Scholar 

  148. Su FY, Xu CY, Taya M, Murayama K, Shinohara Y, Nishimura SI (2008) Detection of carcinoembryonic antigens using a surface Plasmon resonance biosensor. Sensors 8:4282

    Article  CAS  Google Scholar 

  149. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A (2012) Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip 12:2678

    Article  CAS  Google Scholar 

  150. Lillehoj PB, Huang MC, Truong N, Ho CM (2013) Rapid electrochemical detection on a mobile phone. Lab Chip 13:2950

    Article  CAS  Google Scholar 

  151. Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JH (2015) Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron 66:169

    Article  CAS  Google Scholar 

  152. Manz A, Graber N, Widmer H (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1:244

    Article  CAS  Google Scholar 

  153. Wu Y, Xue P, Hui KM, Kang Y (2014) A paper-based microfluidic electrochemical immunodevice integrated with amplification-by-polymerization for the ultrasensitive multiplexed detection of cancer biomarkers. Biosens Bioelectron 52:180

    Article  CAS  Google Scholar 

  154. Baek J, Allen PM, Bawendi MG, Jensen KF (2011) Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow Microreactor. Angew Chem 123:653

    Article  Google Scholar 

  155. Tan SH, Maes F, Semin B, Vrignon J, Baret JC (2014) The microfluidic jukebox, Sci Reports, 4

  156. Qin J, Wheeler AR (2007) Maze exploration and learning in C. elegans. Lab Chip 7:186–192

    Article  CAS  Google Scholar 

  157. Manz A, Harrison DJ, Verpoorte EM, Fettinger JC, Paulus A, Lüdi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatog A 593:253

    Article  CAS  Google Scholar 

  158. Wang Y, Xu H, Luo J, Liu J, Wang L, Fan Y, Yan S, Yang Y, Cai X (2016) A novel label-free microfluidic paper-based immunosensor for highly sensitive electrochemical detection of carcinoembryonic antigen. Biosens Bioelectron 83:319

    Article  CAS  Google Scholar 

  159. Anh NV, Trung HV, Tien BQ, Binh NH, Ha CH, Huy NL, Loc NT, Thu VT, Dai TL (2016) Development of a PMMA electrochemical microfluidic device for carcinoembryonic antigen detection. J Electron Mater 45:2455

    Article  CAS  Google Scholar 

  160. ** Y, Mao H, ** Q, Zhao J (2016) Real-time determination of carcinoembryonic antigen by using a contactless electrochemical immunosensor. Anal Methods 8:4861

    Article  CAS  Google Scholar 

  161. Liang B, Guo X, Fang L, Hu Y, Yang G, Zhu Q, Wei J (2015) Electrochem Commun 50:1

    Article  CAS  Google Scholar 

  162. Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378

    Article  CAS  Google Scholar 

  163. Liu SQ, Ju HX (2002) Renewable reagentless hydrogen peroxide sensor based on direct electron transfer of horseradish peroxidase immobilized on colloidal gold-modified electrode. Anal Biochem 307:110–116

    Article  CAS  Google Scholar 

  164. Yin H, Ai S, Shi W, Zhu L (2009) A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors Actuators B Chem 137:747

    Article  CAS  Google Scholar 

  165. **a C, Wang N, Lidong L, Lin G (2008) Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sensors Actuators B Chem 129:268

    Article  CAS  Google Scholar 

  166. **ang C, Zou Y, Sun L-X, Xu F (2009) Direct electrochemistry and enhanced electrocatalysis of horseradish peroxidase based on flowerlike ZnO-gold nanoparticle-Nafion nanocomposite. Sensors Actuators B Chem 136:158

    Article  CAS  Google Scholar 

  167. Gu BX, Xu CX, Zhu GP, Liu SQ, Chen LY, Wang ML, Zhu JJ (2009) Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J Phys Chem B 113:6553

    Article  CAS  Google Scholar 

  168. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. Trends Anal, Chem. 72: 123

  169. Hasanzadeh M, Shadjou N, de la Guardia M (2017) Nanomaterials for use in immunosensing of carcinoembryonic antigen (CEA): Recent advances. Trends Anal, Chem. 86: 185

Download references

Acknowledgements

We gratefully acknowledge the support of this work by Drug Applied Research Center, Tabriz University of Medical Sciences. Also, we are thanking Nano Technology Center, Urmia University for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hasanzadeh.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanzadeh, M., Shadjou, N. Advanced nanomaterials for use in electrochemical and optical immunoassays of carcinoembryonic antigen. A review. Microchim Acta 184, 389–414 (2017). https://doi.org/10.1007/s00604-016-2066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2066-2

Keywords

Navigation