Log in

Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the preparation of a nanoporous flat electrode by drop casting a nanocomposite consisting of reduced graphene oxide (rGO) and chitosan onto a polyester substrate. An underlying conductive surface is not required. The nanocomposite was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. The 3D network of the composite was used as a scaffold for the immobilization of glucose oxidase (GOx). A well-defined signal related to direct GOx electrochemistry was registered and used to monitor levels of glucose. The resulting biosensor displays a linear response to glucose with a detection limit of 5 μM (at an S/N ratio of 3) and a sensitivity of 41.7 μA⋅mM−1∙cm−2. The sensor was applied to the determination of glucose in artificial saliva.

A 3rd generation amperometric glucose biosensor based on nanoporous electrode was prepared by drop casting reduced graphene oxide and chitosan composite onto a polyester substrate and integrated within an electrochemical cell formed by screen-printed reference and counter electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu YH, Hu SS (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159:1

    Article  CAS  Google Scholar 

  2. Periasamy AP, Chang YJ, Chen SM (2011) Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80:114

    Article  CAS  Google Scholar 

  3. Chen W, Ding Y, Akhigbe J, Brückner C, Li CM, Lei Y (2010) Enhanced electrochemical oxygen reduction-based glucose sensing using glucose oxidase on nanodendritic poly[meso-tetrakis(2-thienyl)porphyrinato]cobalt(II)-SWNTs composite electrodes. Biosens Bioelectron 26:504

    Article  CAS  Google Scholar 

  4. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosens Bioelectron 39:70

    Article  CAS  Google Scholar 

  5. Wang Y, Li H, Kong J (2014) Facile preparation of mesocellular graphene foam for direct glucose oxidase electrochemistry and sensitive glucose sensing. Sens Actuat B-Chem 193:708

    Article  CAS  Google Scholar 

  6. Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498

    Article  CAS  Google Scholar 

  7. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  8. Mani V, Devadas B, Chen SM (2013) Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron 41:309

    Article  CAS  Google Scholar 

  9. Kong FY, Gu SX, Li WW, Chen TT, Xu Q, Wang W (2014) A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxidase biocomposite modified screen-printed electrode: toward whole blood glucose determination. Biosens Bioelectron 56:77

    Article  CAS  Google Scholar 

  10. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181(9):865

    Article  CAS  Google Scholar 

  11. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1):1

    Article  CAS  Google Scholar 

  12. ** J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens Bioelectron 34(1):70

    Article  CAS  Google Scholar 

  13. Randviir EP, Brownson DAC, Metters JP, Kadara RO, Banks CE (2014) The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes. Phys Chem Chem Phys 16:4598

    Article  CAS  Google Scholar 

  14. Leenaerts O, Partoens B, Peeters FM (2009) Water on graphene: hydrophobicity and dipole moment using density functional theory. Phys Rev B 79:235440

    Article  Google Scholar 

  15. Wang X, Bai H, Liu A, Shi G (2010) Electrically conductive and mechanically strong biomimetic chitosan/reduced graphene oxide composite films. J Mater Chem 20:9032

    Article  CAS  Google Scholar 

  16. Zhou Y, Liu S, Jiang HJ, Yang H, Chen HY (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan-graphene nanocomposite. Eletroanalysis 22(12):1323

    Article  CAS  Google Scholar 

  17. Xu H, Dai H, Chen G (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Original Res Article, Talanta 81:334

    CAS  Google Scholar 

  18. Su C, Acik M, Takai K, Lu J, S-j H, Zheng Y, Wu P, Bao Q, Enoki T, Chabal YJ, Loh KP (2012) Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 3:1298

    Article  Google Scholar 

  19. Siu VS, Feng J, Flanigan PW, Palmore GTR, Pacifici D (2014) A “plasmonic cuvette”: dye chemistry coupled to plasmonic interferometry for glucose sensing. Nanophotonics 3(3):125

    Article  CAS  Google Scholar 

  20. Liang B, Fang L, Yang G, Hu Y, Guo X, Ye X (2013) Direct electron transfer glucose biosensor based on glucose oxidase self-assembled on electrochemically reduced carboxyl graphene. Biosens Bioelectron 43:131

    Article  CAS  Google Scholar 

  21. Qiu C, Wang X, Liu X, Hou S, Ma H (2012) Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor. Electrochim Acta 67:140

    Article  CAS  Google Scholar 

  22. Liu Y, Yuan R, Chai Y, Tang D, Dai J, Zhong X (2006) Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode. Sens Actuat B-Chem 115(1):109

    Article  CAS  Google Scholar 

  23. Bard AJ, Faulkner LR, Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 231.

  24. Choi BG, Im J, Kim HS, Park H (2011) Flow-injection amperometric glucose biosensors based on graphene/nafion hybrid electrodes. Electrochim Acta 56(27):9721

    Article  CAS  Google Scholar 

  25. Dai ZH, Ni J, Huang XH, Lu GF, Bao JC (2007) Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 70(2):250

    Article  CAS  Google Scholar 

  26. Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem Int Ed 48(32):5897

    Article  CAS  Google Scholar 

  27. Zhang X, Liao Q, Chu M, Liu S, Zhang Y (2014) Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens Bioelectron 52:281

    Article  CAS  Google Scholar 

  28. Wang J, Wang L, Di J, Tu Y (2008) Disposable biosensor based on immobilization of glucose oxidase at gold nanoparticles electrodeposited on indium tin oxide electrode. Sens Actuat B-Chem 135(1):283

    Article  CAS  Google Scholar 

  29. Cao H, Zhu Y, Tang L, Yang X, Li C (2008) A glucose biosensor based on immobilization of glucose oxidase into 3D macroporous TiO2. Electroanalysis 20(20):2223

    Article  CAS  Google Scholar 

  30. Li J, Dong S (1997) The electrochemical study of oxidation-reduction properties of horseradish peroxidase. J Electroanal Chem 431(1):19

    Article  CAS  Google Scholar 

  31. Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263

  32. Zhang J, Feng M, Tachikawa H (2007) Layer-by-layer fabrication and direct electrochemistry of glucose oxidase on single wall carbon nanotubes. Biosens Bioelectron 22(12):3036

    Article  CAS  Google Scholar 

  33. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  34. Liu J, Chou A, Rahmat W, Paddon-Row MN, Gooding JJ (2005) Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1):38

    Article  CAS  Google Scholar 

  35. Mutyala S, Mathiyarasu J (2014) Direct electron transfer at a glucose oxidase–chitosan-modified Vulcan carbon paste electrode for electrochemical biosensing of glucose. Appl Biochem Biotechnol 172(3):1517

    Article  CAS  Google Scholar 

  36. Liu Q, Lu X, Li J, Yao X, Li JH (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22(12):3203

    Article  CAS  Google Scholar 

  37. Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. Biosens Bioelectron 52:147

    Article  CAS  Google Scholar 

  38. Wang B, Yan S, Shi Y (2015) Direct electrochemical analysis of glucose oxidase on a graphene aerogel/gold nanoparticle hybrid for glucose biosensing. J Solid State Electrochem 19(1):307

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the Tunisian Ministry of Higher Education and Scientific Research (MHESR) and the University of Tunis El-Manar for the support given to AR and WA (research and travel funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Raouafi.

Electronic supplementary material

ESM 1

(DOC 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabti, A., Argoubi, W. & Raouafi, N. Enzymatic sensing of glucose in artificial saliva using a flat electrode consisting of a nanocomposite prepared from reduced graphene oxide, chitosan, nafion and glucose oxidase. Microchim Acta 183, 1227–1233 (2016). https://doi.org/10.1007/s00604-016-1753-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1753-3

Keywords

Navigation