Log in

Investigating the Propagation of Multiple Hydraulic Fractures in Shale Oil Rocks Using Acoustic Emission

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The propagation of multiple fractures plays a significant role in the effectiveness of hydraulic stimulation in shale oil reservoirs. Previous studies reported that the laminations and bedding interface in shale oil rocks could influence the propagation of single hydraulic fracture. However, the propagation mechanism of multiple fractures in such rocks is still unclear. Here we use a true-triaxial experimental system, together with the acoustic emission (AE) monitoring system, to investigate the propagation of multiple fractures in shale oil reservoir rocks. The results show that the fracture interference started at the initiation stage seriously affects the propagation of multiple fractures. More clusters per stage could aggravate the fracture interference near the wellhead. The laminations and bedding interfaces are the main causes of fracture interference and could hinder the height of hydraulic fractures. Shear-type AE event signals the generation of fracture interference caused by the slip of bedding interface and the deflection of fractures induced by the laminations. The mechanism of fracture interference not only lies in stress shadow but also in the changes in fluid pressure caused by the high permeability of laminations and bedding interface. The experimental results provide basic and detailed data for studying hydraulic fracturing in shale oil reservoirs.

Highlights

  • True-triaxial experiment is conducted to investigate the propagation of multiple hydraulic fractures.

  • Both the lamination and bedding interface influence multiple hydraulic fracture propagation.

  • The AE monitoring indicates many shear-type fractures when fracture interference appears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2

modified from Zhang et al. 2021a)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

f pf :

Perforation friction

ρ s :

Density of the fluid

n p :

Number of perforations

d p :

Diameter of the perforation

K d :

Discharge coefficient

S M :

Cluster spacing or stage spacing in the experiment

L M :

Half-length of a fracture in the experiment

S F :

Cluster spacing or stage spacing in the field

L F :

Half-length of a fracture in the field

D :

Stage spacing

d :

Cluster spacing

A :

Asymmetry distribution of AE events

N :

Total number of AE events

c :

Half of the fracture height

p :

Net pressure in the hydraulic fracture

References

  • Bunger A, Jeffrey RG, Zhang X (2014) Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells. SPE J 19(04):608–620

    Article  Google Scholar 

  • Crump J, Conway M (1988) Effects of perforation-entry friction on bottomhole treating analysis. J Pet Technol 40(08):1041–1048

    Article  Google Scholar 

  • Graham CC, Stanchits S, Main IG, Dresen G (2010) Comparison of polarity and moment tensor inversion methods for source analysis of acoustic emission data. Int J Rock Mech Min Sci 47(1):161–169. https://doi.org/10.1016/j.ijrmms.2009.05.002

    Article  Google Scholar 

  • Grosse CU, Ohtsu M (2008) Acoustic emission testing. Springer, Berlin

    Book  Google Scholar 

  • Hampton JC, Hu D, Matzar L, Gutierrez M (2014) Cumulative volumetric deformation of a hydraulic fracture using acoustic emission and micro-CT imaging. In: 48th U.S. rock mechanics/geomechanics symposium, Minneapolis, Minnesota

  • Hou B, Cheng W, ** Y, Diao C, Zhang Y, Yang L (2014) Experimental investigation on fracture geometry in multi-stage fracturing under tri-axial stresses. In: ISRM international symposium-8th Asian rock mechanics symposium. international society for rock mechanics and rock engineering

  • Huang B, Liu J (2017) Experimental investigation of the effect of bedding planes on hydraulic fracturing under true triaxial stress. Rock Mech Rock Eng 50(10):2627–2643. https://doi.org/10.1007/s00603-017-1261-8

    Article  Google Scholar 

  • Huo J, He J, Gao Y, Dong Y, Xv D, Li Y (2019) Difficulties and countermeasures of shale oil development in lucaogou formation of Jimsar Sag. **njiang Pet Geol 40(4):379–388

    Google Scholar 

  • Ishida T, Labuz JF, Manthei G, Meredith PG, Nasseri M, Shin K, Yokoyama T, Zang A (2017) ISRM suggested method for laboratory acoustic emission monitoring. Rock Mech Rock Eng 50(3):665–674

    Article  Google Scholar 

  • Lecampion B, Desroches J (2014) Simultaneous initiation of multiple transverse hydraulic fractures from a horizontal well. In: 48th US rock mechanics/geomechanics symposium. OnePetro

  • Lei X, Kusunose K, Rao MVMS, Nishizawa O, Satoh T (2000) Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J Geophys Res Solid Earth 105(B3):6127–6139. https://doi.org/10.1029/1999JB900385

    Article  Google Scholar 

  • Lei X, Nishizawa O, Kusunose K, Satoh T (1992) Fractal structure of the hypacenter distributions and focal mechanism solutions of acoustic emission in two granites of different grain sizes. J Phys Earth 40(6):617–634

    Article  Google Scholar 

  • Li N, Zhang S, Zou Y, Ma X, Wu S, Zhang Y (2018a) Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation. Rock Mech Rock Eng 51(4):1047–1062

    Article  Google Scholar 

  • Li N, Zhang S, Zou Y, Ma X, Zhang Z, Li S, Chen M, Sun Y (2018b) Acoustic emission response of laboratory hydraulic fracturing in layered shale. Rock Mech Rock Eng 51(11):3395–3406

    Article  Google Scholar 

  • Li S, Zhang S, Zou Y, Zhang X, Ma X, Wu S, Zhang Z, Sun Z, Liu C (2020) Experimental study on the feasibility of supercritical CO2-gel fracturing for stimulating shale oil reservoirs. Eng Fract Mech 238(May):107276–107276. https://doi.org/10.1016/j.engfracmech.2020.107276

    Article  Google Scholar 

  • Liu N, Zhang Z, Zou Y, Ma X, Zhang Y (2018) Propagation law of hydraulic fractures during multi-staged horizontal well fracturing in a tight reservoir. Pet Explor Dev 45(6):1129–1138. https://doi.org/10.1016/S1876-3804(18)30116-2

    Article  Google Scholar 

  • Liu X, Rasouli V, Guo T, Qu Z, Sun Y, Damjanac B (2020a) Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling. Eng Fract Mech 238:107278. https://doi.org/10.1016/j.engfracmech.2020.107278

    Article  Google Scholar 

  • Liu Z, Ren X, Lin X, Lian H, Yang L, Yang J (2020b) Effects of confining stresses, pre-crack inclination angles and injection rates: observations from large-scale true triaxial and hydraulic fracturing tests in laboratory. Rock Mech Rock Eng 53(4):1991–2000. https://doi.org/10.1007/s00603-019-01995-2

    Article  Google Scholar 

  • Luo Q, Gong L, Qu Y, Zhang K, Zhang G, Wang S (2018) The tight oil potential of the Lucaogou Formation from the southern Junggar Basin, China. Fuel 234:858–871

    Article  Google Scholar 

  • Ma X, Li N, Yin C, Li Y, Zou Y, Wu S, He F, Wang X, Zhou T (2017) Hydraulic fracture propagation geometry and acoustic emission interpretation: a case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China. Pet Explor Dev 44(6):1030–1037. https://doi.org/10.1016/S1876-3804(17)30116-7

    Article  Google Scholar 

  • Manchanda R, Bryant EC, Bhardwaj P, Cardiff P, Sharma MM (2017) Strategies for effective stimulation of multiple perforation clusters in horizontal wells. SPE Prod Oper 33(03):539–556. https://doi.org/10.2118/179126-pa

    Article  Google Scholar 

  • Manchanda R, Shrivastava K, Zheng S, Sharma M (2020) A new mechanism for the formation of hydraulic fracture swarms. In: SPE hydraulic fracturing technology conference and exhibition. Society of Petroleum Engineers

  • Meglis IL, Chows TM, Young RP (1995) Progressive microcrack development in tests in Lac du Bonnet granite—I. Acoustic emission source location and velocity measurements. Int J Rock Mech Min Sci Geomech Abstr 32(8):741–750. https://doi.org/10.1016/0148-9062(95)00014-8

    Article  Google Scholar 

  • Ono K (2016) Calibration methods of acoustic emission sensors. Materials 9(7):508–508

    Article  Google Scholar 

  • Petružálek M, Jechumtálová Z, Šílený J, Kolář P, Svitek T, Lokajíček T, Turková I, Kotrlý M, Onysko R (2020) Application of the shear-tensile source model to acoustic emissions in Westerly granite. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104246

    Article  Google Scholar 

  • Ren X, Zhou L, Li H, Lu Y (2019) A three-dimensional numerical investigation of the propagation path of a two-cluster fracture system in horizontal wells. J Pet Sci Eng 173:1222–1235. https://doi.org/10.1016/j.petrol.2018.10.105

    Article  Google Scholar 

  • Satoh T, Nishizawa O, Kusunose K (1990) Fault development in oshima granite under triaxial compression inferred from hypocenter distribution and focal mechanism of acoustic emission. Sci Rep Tohoku Univ 5(33):241–250

    Google Scholar 

  • Sedlak P, Hirose Y, Enoki M (2013) Acoustic emission localization in thin multi-layer plates using first-arrival determination. Mech Syst Sig Process 36(2):636–649. https://doi.org/10.1016/j.ymssp.2012.11.008

    Article  Google Scholar 

  • Taghichian A, Zaman M, Devegowda D (2014) Stress shadow size and aperture of hydraulic fractures in unconventional shales. J Pet Sci Eng 124:209–221. https://doi.org/10.1016/j.petrol.2014.09.034

    Article  Google Scholar 

  • Wang Y, Ju Y, Zhang H, Gong S, Song J, Li Y, Chen J (2021) Adaptive finite element-discrete element analysis for the stress shadow effects and fracture interaction behaviours in three-dimensional multistage hydrofracturing considering varying perforation cluster spaces and fracturing scenarios of horizontal wells. Rock Mech Rock Eng 54(4):1815–1839. https://doi.org/10.1007/s00603-021-02364-8

    Article  Google Scholar 

  • Wu K, Olson J, Balhoff MT, Yu W (2016) Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells. SPE Prod Oper 32(01):41–50. https://doi.org/10.2118/174869-pa

    Article  Google Scholar 

  • Wu K, Olson JE (2015) A simplified three-dimensional displacement discontinuity method for multiple fracture simulations. Int J Fract 193(2):191–204. https://doi.org/10.1007/s10704-015-0023-4

    Article  Google Scholar 

  • Wu K, Olson JE (2016) Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells. SPE J 21(03):1000–1008. https://doi.org/10.2118/178925-pa

    Article  Google Scholar 

  • Wu M, Gao K, Liu J, Song Z, Huang X (2022) Influence of rock heterogeneity on hydraulic fracturing: a parametric study using the combined finite-discrete element method. Int J Solids Struct 234:111293

    Article  Google Scholar 

  • Wu S, Li T, Ge H, Wang X, Li N, Zou Y (2019) Shear-tensile fractures in hydraulic fracturing network of layered shale. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2019.106428

    Article  Google Scholar 

  • **ong H, Liu S, Feng F, Liu S, Yue K (2020) Optimizing fracturing design and well spacing with complex-fracture and reservoir simulations: a Permian basin case study. SPE Prod Oper 35(04):703–718

    Google Scholar 

  • Yang Y, Ren X, Zhou L, Lu Y (2020) Numerical study on competitive propagation of multi-perforation fractures considering full hydro-mechanical coupling in fracture-pore dual systems. J Pet Sci Eng 191:107109. https://doi.org/10.1016/j.petrol.2020.107109

    Article  Google Scholar 

  • Yuan L, Hou B, Li W, **ong Z, Qin M, Chen M, Li Y (2016) Experimental investigation on fracture geometry in multi-stage fracturing under tri-axial stresses. In: 50th US rock mechanics/geomechanics symposium. american rock mechanics association

  • Zhai H, Chang X, Wang Y, Lei X, Xui Z (2020) Analysis of acoustic emission events induced during stress unloading of a hydraulic fractured Longmaxi shale sample. J Pet Sci Eng 189(September 2019):106990–106990. https://doi.org/10.1016/j.petrol.2020.106990

    Article  Google Scholar 

  • Zhang J, Tang Y, Li H (2017) STA/LTA fractal dimension algorithm of detecting the P-wave arrival. Bull Seismol Soc Am 108(1):230–237. https://doi.org/10.1785/0120170099

    Article  Google Scholar 

  • Zhang S, Li S, Zou Y, Li J, Ma X, Zhang X, Zhang Z, Wu S (2021a) Experimental study on fracture height propagation during multi-stage fracturing of horizontal wells in shale oil reservoir. J China Univ Pet (ed Nat Sci) 45(01):77–86

    Google Scholar 

  • Zhang Z, Zhang S, Zou Y, Ma X, Li N, Liu L (2021b) Experimental investigation into simultaneous and sequential propagation of multiple closely spaced fractures in a horizontal well. J Pet Sci Eng 202:108531. https://doi.org/10.1016/j.petrol.2021.108531

    Article  Google Scholar 

  • Zou Y, Ma X, Zhou T, Li N, Chen M, Li S, Zhang Y, Li H (2017) Hydraulic fracture growth in a layered formation based on fracturing experiments and discrete element modeling. Rock Mech Rock Eng 50(9):2381–2395. https://doi.org/10.1007/s00603-017-1241-z

    Article  Google Scholar 

  • Zou Y, Zhang S, Zhou T, Zhou X, Guo T (2016) Experimental investigation into hydraulic fracture network propagation in gas shales using CT scanning technology. Rock Mech Rock Eng 49(1):33–45. https://doi.org/10.1007/s00603-015-0720

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the subprojects of the Strategic Cooperation Technology Projects of CNPC and CUPB (ZLZX2020-01-08 and ZLZX2020-01-07), and the Natural Science Foundation of China (no. 51774236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Gao, K., Wang, X. et al. Investigating the Propagation of Multiple Hydraulic Fractures in Shale Oil Rocks Using Acoustic Emission. Rock Mech Rock Eng 55, 6015–6032 (2022). https://doi.org/10.1007/s00603-022-02960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-022-02960-2

Keywords

Navigation