Log in

The Current Status of Electron Ion Collider in China

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Measuring the internal structures of the nucleon and the nuclear matter is one of the hot scientific topics in the filed of high-energy nuclear physics, which can answer the fundamental questions about the emergent properties of the nucleon and the nuclear force that binds the nucleons together forming an atomic nucleus. The high-energy lepton-proton/nucleus scattering is a well-established and clear way to probe the inner structure of these subatomic particles, which attracts a lot of interests from the nuclear physicists worldwide. To pursue such scientific goals, an Electron-ion collider in China (EicC) has been proposed as a future high-energy nuclear physics project in China. EicC will focus on the sea quarks in the nucleon, which well compliments the projects of electron-ion collider in US and JLab 12 GeV upgrade. In this article, the plans and conceptual designs of the accelerator and the detectors of EicC are briefly discussed. We illustrate some highlights of the experiments that will be performed at EicC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.N. Yang, R.L. Mills, Phys. Rev. 96, 191 (1954). https://doi.org/10.1103/PhysRev.96.191

    Article  ADS  MathSciNet  Google Scholar 

  2. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973). https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  3. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  4. P.A. Zyla, PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  5. J. Ashman et al., Phys. Lett. B 206, 364 (1988). https://doi.org/10.1016/0370-2693(88)91523-7

    Article  ADS  Google Scholar 

  6. D. Boer, et al., (2011) preprint ar**v:1108.1713

  7. M. Diehl, Eur. Phys. J. A 52(6), 149 (2016). https://doi.org/10.1140/epja/i2016-16149-3

    Article  ADS  Google Scholar 

  8. M. Diehl, Phys. Rept. 388, 41 (2003). https://doi.org/10.1016/j.physrep.2003.08.002

    Article  ADS  Google Scholar 

  9. X. Ji, Ann. Rev. Nucl. Part. Sci. 54, 413 (2004). https://doi.org/10.1146/annurev.nucl.54.070103.181302

    Article  ADS  Google Scholar 

  10. X.D. Ji, Phys. Rev. Lett. 78, 610 (1997). https://doi.org/10.1103/PhysRevLett.78.610

    Article  ADS  Google Scholar 

  11. X.D. Ji, Phys. Rev. Lett. 74, 1071 (1995). https://doi.org/10.1103/PhysRevLett.74.1071

    Article  ADS  Google Scholar 

  12. D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996). https://doi.org/10.3254/978-1-61499-215-8-105

    Article  Google Scholar 

  13. J.J. Aubert et al., Phys. Lett. B 123, 275 (1983). https://doi.org/10.1016/0370-2693(83)90437-9

    Article  ADS  Google Scholar 

  14. D.P. Anderle et al., Front. Phys. (Bei**g) 16(6), 64701 (2021). https://doi.org/10.1007/s11467-021-1062-0

    Article  ADS  Google Scholar 

  15. A. Accardi et al., Eur. Phys. J. A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9

    Article  ADS  Google Scholar 

  16. R. Abdul Khalek, et al., (2021) preprint ar**v:2103.05419

  17. W.C. Chang, J.C. Peng, Prog. Part. Nucl. Phys. 79, 95 (2014). https://doi.org/10.1016/j.ppnp.2014.08.002

    Article  ADS  Google Scholar 

  18. X. Chen, F.K. Guo, C.D. Roberts, R. Wang, Few Body Syst. 61(4), 43 (2020). https://doi.org/10.1007/s00601-020-01574-0

    Article  ADS  Google Scholar 

  19. R. Wang, J. Evslin, X. Chen, Eur. Phys. J. C 80(6), 507 (2020). https://doi.org/10.1140/epjc/s10052-020-8057-9

    Article  ADS  Google Scholar 

  20. D.E. Kharzeev, Phys. Rev. D 104(5), 054015 (2021). https://doi.org/10.1103/PhysRevD.104.054015

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Wang, W. Kou, Y.P. **e, X. Chen, Phys. Rev. D 103(9), L091501 (2021). https://doi.org/10.1103/PhysRevD.103.L091501

    Article  ADS  Google Scholar 

  22. R. Wang, W. Kou, C. Han, J. Evslin, X. Chen, Phys. Rev. D 104(7), 074033 (2021). https://doi.org/10.1103/PhysRevD.104.074033

    Article  ADS  Google Scholar 

  23. C.D. Roberts, D.G. Richards, T. Horn, L. Chang, Prog. Part. Nucl. Phys. 120, 103883 (2021). https://doi.org/10.1016/j.ppnp.2021.103883

    Article  Google Scholar 

  24. L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Phys. Rev. Lett. 111(14), 141802 (2013). https://doi.org/10.1103/PhysRevLett.111.141802

    Article  ADS  Google Scholar 

  25. M. Ding, K. Raya, D. Binosi, L. Chang, C.D. Roberts, S.M. Schmidt, Phys. Rev. D 101(5), 054014 (2020). https://doi.org/10.1103/PhysRevD.101.054014

    Article  ADS  Google Scholar 

  26. S.X. Qin, C. Chen, C. Mezrag, C.D. Roberts, Phys. Rev. C 97(1), 015203 (2018). https://doi.org/10.1103/PhysRevC.97.015203

    Article  ADS  Google Scholar 

  27. P.C. Barry, N. Sato, W. Melnitchouk, C.R. Ji, Phys. Rev. Lett. 121(15), 152001 (2018). https://doi.org/10.1103/PhysRevLett.121.152001

    Article  ADS  Google Scholar 

  28. C. Han, G. **e, R. Wang, X. Chen, Eur. Phys. J. C 81(4), 302 (2021). https://doi.org/10.1140/epjc/s10052-021-09087-8

    Article  ADS  Google Scholar 

  29. L. Chang, C.D. Roberts, Chin. Phys. Lett. 38(8), 081101 (2021). https://doi.org/10.1088/0256-307X/38/8/081101

    Article  ADS  Google Scholar 

  30. Y.P. **e, X.Y. Wang, X. Chen, Eur. Phys. J. C 81(8), 710 (2021). https://doi.org/10.1140/epjc/s10052-021-09509-7

    Article  ADS  Google Scholar 

  31. Y.P. **e, V.P. Goncalves, Eur. Phys. J. C 81(7), 645 (2021). https://doi.org/10.1140/epjc/s10052-021-09453-6

    Article  ADS  Google Scholar 

  32. Y.P. **e, X. Cao, Y.T. Liang, X. Chen, Chin. Phys. C 45(4), 043105 (2021). https://doi.org/10.1088/1674-1137/abdea9

    Article  ADS  Google Scholar 

  33. S.R. Klein, Y.P. **e, Phys. Rev. C 100(2), 024620 (2019). https://doi.org/10.1103/PhysRevC.100.024620

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank all the members of EicC collaboration and many colleagues all over the globe for making a lot of efforts on the proposal of EicC and the EicC White Paper. This proceeding is partly supported by the Strategic Priority Research Program of Chinese Academy of Sciences under the Grant NO. XDB34030301 and the National Natural Science Foundation of China under the Grant NO. 12005266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Chen, X. The Current Status of Electron Ion Collider in China. Few-Body Syst 63, 48 (2022). https://doi.org/10.1007/s00601-022-01751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01751-3

Navigation