Log in

Clinical relevance of active straight leg raising, standing up, and walking after total knee arthroplasty in a cross-sectional study

  • Original Article • KNEE - ARTHROPLASTY
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Active straight leg raising (ASLR) is used to assess restoration of the quadriceps muscle immediately after total knee arthroplasty (TKA). This study aimed to (1) compare the times required to accomplish ASLR, standing up, and walking after TKA, and (2) evaluate the correlation between the time required to accomplish ASLR and perioperative patient-related factors.

Methods

This cross-sectional study included 271 patients (335 primary TKAs performed using the conventional medial parapatellar approach). Postoperative times required until each activity was accomplished were confirmed. Various factors that might impact ASLR, including prosthetic design, were also evaluated.

Results

Post-TKA, it took 1.5 ± 0.5 days to accomplish ASLR, 1.3 ± 0.6 days to accomplish standing up, and 1.4 ± 0.7 days to accomplish walking. There were no significant correlations between any factor and ASLR. Strong correlations were found between the times required to accomplish standing up and walking (p < 0.0001, r = 0.804). There were no significant correlations between the times required to accomplish ASLR and standing up/walking. A longer time was necessary for ASLR accomplishment than for standing up (p < 0.001) and walking (p < 0.001). Standing up was accomplished earlier than walking (p = 0.008).

Conclusions

There was no delay in post-TKA ASLR accomplishment compared with previous reports. No factors affecting ASLR during the perioperative period suggested that ASLR was controlled by factors other than knee joint-related factors. ASLR was not correlated with standing up/walking; hence, the clinical significance of ASLR immediately after TKA for early ambulation is unclear.

Level of evidence

Prognostic study, Level II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auyong DB, Allen CJ, Pahang JA, Clabeaux JJ, MacDonald KM, Hanson NA (2015) Reduced length of hospitalization in primary total knee arthroplasty patients using an updated enhanced recovery after orthopedic surgery (ERAS) pathway. J Arthroplasty 30(10):1705–1709

    Article  PubMed  Google Scholar 

  2. Chen AF, Stewart MK, Heyl AE, Klatt BA (2012) Effect of immediate postoperative physical therapy on length of stay for total joint arthroplasty patients. J Arthroplasty 27(6):851–856

    Article  PubMed  Google Scholar 

  3. Guerra ML, Singh PJ, Taylor NF (2015) Early mobilization of patients who have had a hip or knee joint replacement reduces length of stay in hospital: a systematic review. Clin Rehabil 29(9):844–854

    Article  PubMed  Google Scholar 

  4. Maempel JF, Walmsley PJ (2015) Enhanced recovery programmes can reduce length of stay after total knee replacement without sacrificing functional outcome at one year. Ann R Coll Surg Engl 97(8):563–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tayrose G, Newman D, Slover J, Jaffe F, Hunter T, Bosco J III (2013) Rapid mobilization decreases length-of-stay in joint replacement patients. Bull Hosp Jt Dis 71(3):222–226

    Google Scholar 

  6. Chandrasekaran S, Ariaretnam SK, Tsung J, Dickison D (2009) Early mobilization after total knee replacement reduces the incidence of deep venous thrombosis. ANZ J Surg 79:526–529

    Article  PubMed  Google Scholar 

  7. Pearse EO, Caldwell BF, Lockwood RJ, Hollard J (2007) Early mobilisation after conventional knee replacement may reduce the risk of postoperative venous thromboembolism. J Bone Joint Surg Br 89(3):316–322

    Article  PubMed  CAS  Google Scholar 

  8. Pua YH, Ong PH (2014) Association of early ambulation with length of stay and costs in total knee arthroplasty: retrospective cohort study. Am J Phys Med Rehabil 93(11):962–970

    Article  PubMed  Google Scholar 

  9. Avci CC, Gülabi D, Erdem M, Kurnaz R, Güneş T, Bostan B (2013) Minimal invasive midvastus versus standard parapatellar approach in total knee arthroplasty. Acta Orthop Traumatol Turc 47(1):1–7

    Article  PubMed  Google Scholar 

  10. Boerger TO, Aglietti P, Mondanelli N, Sensi L (2005) Mini-subvastus versus medial parapatellar approach in total knee arthroplasty. Clin Orthop Relat Res 440:82–87

    Article  PubMed  CAS  Google Scholar 

  11. Bourke MG, Jull GA, Buttrum PJ, Fitzpatrick PL, Dalton PA, Russell TG (2012) Comparing outcomes of medial parapatellar and subvastus approaches in total knee arthroplasty: a randomized controlled trial. J Arthroplasty 27(3):347–353

    Article  PubMed  Google Scholar 

  12. Jain S, Wasnik S, Mittal A, Hegde C (2013) Outcome of subvastus approach in elderly nonobese patients undergoing bilateral simultaneous total knee arthroplasty: a randomized controlled study. Indian J Orthop 47(1):45–49

    Article  PubMed  PubMed Central  Google Scholar 

  13. Jung YB, Lee YS, Lee EY, Jung HJ, Nam CH (2009) Comparison of the modified subvastus and medial parapatellar approaches in total knee arthroplasty. Int Orthop 33(2):419–423

    Article  PubMed  Google Scholar 

  14. Maru M, Akra G, McMurtry I, Port A (2009) A prospective comparative study of the midvastus and medial parapatellar approaches for total knee arthroplasty in the early postoperative period. Eur J Orthop Surg Traumatol 19(7):473–476

    Article  Google Scholar 

  15. Mukherjee P, Press J, Hockings M (2009) Mid-vastus vs medial para-patellar approach in total knee replacement—time to discharge. Iowa Orthop J 29:19–22

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Nutton RW, Wade FA, Coutts FJ, van der Linden ML (2014) Short term recovery of function following total knee arthroplasty: a randomised study of the medial parapatellar and midvastus approaches. Arthritis 2014:173857

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roysam GS, Oakley MJ (2001) Subvastus approach for total knee arthroplasty: a prospective, randomized, and observer-blinded trial. J Arthroplasty 16(4):454–457

    Article  PubMed  CAS  Google Scholar 

  18. Tashiro Y, Miura H, Matsuda S, Okazaki K, Iwamoto Y (2007) Minimally invasive versus standard approach in total knee arthroplasty. Clin Orthop Relat Res 463:144–150

    PubMed  Google Scholar 

  19. Weinhardt C, Barisic M, Bergmann EG, Heller KD (2004) Early results of subvastus versus medial parapatellar approach in primary total knee arthroplasty. Arch Orthop Trauma Surg 124(6):401–403

    Article  PubMed  CAS  Google Scholar 

  20. Matsueda M, Gustilo RB (2000) Subvastus and medial parapatellar approaches in total knee arthroplasty. Clin Orthop Relat Res 371:161–168

    Article  Google Scholar 

  21. In Y, Kim JM, Choi NY, Kim SJ (2007) Large thigh girth is a relative contraindication for the subvastus approach in primary total knee arthroplasty. J Arthroplasty 22(4):569–573

    Article  PubMed  Google Scholar 

  22. Shah N, Nilesh G, Patel N (2010) Mini-subvastus approach for total knee arthroplasty in obese patients. Indian J Orthop 44(3):292–299

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chin PL, Foo LS, Yang KY, Yeo SJ, Lo NN (2007) Randomized controlled trial comparing the radiologic outcomes of conventional and minimally invasive techniques for total knee arthroplasty. J Arthroplasty 22(6):800–806

    Article  PubMed  Google Scholar 

  24. Dalury DF, Dennis DA (2005) Mini-incision total knee arthroplasty can increase risk of component malalignment. Clin Orthop Relat Res 440:77–81

    Article  PubMed  Google Scholar 

  25. Karachalios T, Giotikas D, Roidis N, Poultsides L, Bargiotas K, Malizos KN (2008) Total knee replacement performed with either a mini-midvastus or a standard approach: a prospective randomised clinical and radiological trial. J Bone Joint Surg Br 90(5):584–591

    Article  PubMed  Google Scholar 

  26. Barrack RL, Barnes CL, Burnett RS, Miller D, Clohisy JC, Maloney WJ (2009) Minimal incision surgery as a risk factor for early failure of total knee arthroplasty. J Arthroplasty 24(4):489–498

    Article  PubMed  Google Scholar 

  27. Alicea J (2001) Scoring systems and their validation for the arthritic knee. In: Insall JN, Scott WN (eds) Surgery of the knee, vol 2, 3rd edn. Churchill Livingstone, New York, pp 1507–1515

    Google Scholar 

  28. American Society of Anesthesiologists physical status classification system. 2014. http://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system. Accessed 15 Oct 2014

  29. Ishii Y, Noguchi H, Matsuda Y, Takeda M, Higashihara T (2008) A new tourniquet system that determines pressures in synchrony with systolic blood pressure in total knee arthroplasty. J Arthroplasty 23(7):1050–1056

    Article  PubMed  Google Scholar 

  30. Ishii Y, Noguchi H, Takeda M, Sato J, Toyabe S (2011) Prediction of range of motion 2 years after mobile-bearing total knee arthroplasty: PCL-retaining versus PCL-sacrificing. Knee Surg Sports Traumatol Arthrosc 19(12):2002–2008

    Article  PubMed  Google Scholar 

  31. Kumar PJ, McPherson EJ, Dorr LD, Wan Z, Baldwin K (1996) Rehabilitation after total knee arthroplasty: a comparison of 2 rehabilitation techniques. Clin Orthop Relat Res 331:93–101

    Article  Google Scholar 

  32. Ostermeier S, Hurschler C, Stukenborg-Colsman C (2004) Quadriceps function after TKA—an in vitro study in a knee kinematics simulator. Clin Biomech 19(3):270–276

    Article  CAS  Google Scholar 

  33. D’Lima DD, Poole C, Chadha H, Hermida JC, Mahar A, Colwell CW Jr (2001) Quadriceps moment arm and quadriceps forces after total knee arthroplasty. Clin Orthop Relat Res 392:213–220

    Article  Google Scholar 

  34. Lewandowski PJ, Askew MJ, Lin DF, Hurst FW, Melby A (1997) Kinematics of posterior cruciate ligament-retaining and -sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses. J Arthroplasty 12(7):777–784

    Article  PubMed  CAS  Google Scholar 

  35. Ostermeier S, Stukenborg-Colsman C (2011) Quadriceps force after TKA with femoral single radius. Acta Orthop 82(3):339–343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Greene KA, Schurman JR 2nd (2008) Quadriceps muscle function in primary total knee arthroplasty. J Arthroplasty 23(7 Suppl):15–19

    Article  PubMed  Google Scholar 

  37. Anwer S, Alghadir A (2014) Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study. J Phys Ther Sci 26(5):745–748

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ditroilo M, Forte R, Benelli P, Gambarara D, De Vito G (2010) Effects of age and limb dominance on upper and lower limb muscle function in healthy males and females aged 40–80 years. J Sports Sci 28(6):667–677

    Article  PubMed  Google Scholar 

  39. Gustavson AM, Wolfe P, Falvey JR, Eckhoff DG, Toth MJ, Stevens-Lapsley JE (2016) Men and women demonstrate differences in early functional recovery after total knee arthroplasty. Arch Phys Med Rehabil 97(7):1154–1162

    Article  PubMed  Google Scholar 

  40. Pua YH, Seah FJ, Seet FJ, Tan JW, Liaw JS, Chong HC (2015) Sex differences and impact of body mass index on the time course of knee range of motion, knee strength, and gait speed after total knee arthroplasty. Arthritis Care Res 67(10):1397–1405

    Article  Google Scholar 

  41. Dennis DA, Kittelson AJ, Yang CC, Miner TM, Kim RH, Stevens-Lapsley JE (2016) Does tourniquet use in TKA affect recovery of lower extremity strength and function? A randomized trial. Clin Orthop Relat Res 474(1):69–77

    Article  PubMed  Google Scholar 

  42. Rathod P, Deshmukh A, Robinson J, Greiz M, Ranawat A, Rodriguez J (2015) Does tourniquet time in primary total knee arthroplasty influence clinical recovery? J Knee Surg 28(4):335–342

    PubMed  Google Scholar 

  43. Gómez-Barrena E, Fernandez-García C, Fernandez-Bravo A, Cutillas-Ruiz R, Bermejo-Fernandez G (2010) Functional performance with a single-radius femoral design total knee arthroplasty. Clin Orthop Relat Res 468(5):1214–1220

    Article  PubMed  Google Scholar 

  44. Kim DH, Kim DK, Lee SH, Kim KI, Bae DK (2015) Is single-radius design better for quadriceps recovery in total knee arthroplasty? Knee Surg Relat Res 27(4):240–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Jeon IC, Kwon OY, Weon JH, Choung SD, Hwang UJ (2016) Comparison of psoas major muscle thickness measured by sonography during active straight leg raising in subjects with and without uncontrolled lumbopelvic rotation. Man Ther 21:165–169

    Article  PubMed  Google Scholar 

  46. Mens JM, Vleeming A, Snijders CJ, Koes BW, Stam HJ (2001) Reliability and validity of the active straight leg raise test in posterior pelvic pain since pregnancy. Spine 26(10):1167–1171

    Article  PubMed  CAS  Google Scholar 

  47. El Bitar YF, Illingworth KD, Scaife SL, Horberg JV, Saleh KJ (2015) Hospital length of stay following primary total knee arthroplasty: data from the nationwide inpatient sample database. J Arthroplasty 30(10):1710–1715

    Article  PubMed  Google Scholar 

  48. Otero JE, Gholson JJ, Pugely AJ, Gao Y, Bedard NA, Callaghan JJ (2016) Length of hospitalization after joint arthroplasty: does early discharge affect complications and readmission rates? J Arthroplasty 31(12):2714–2725

    Article  PubMed  Google Scholar 

  49. Berger RA, Kusuma SK, Sanders SA, Thill ES, Sporer SM (2009) The feasibility and perioperative complications of outpatient knee arthroplasty. Clin Orthop Relat Res 467(6):1443–1449

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nestor BJ, Toulson CE, Backus SI, Lyman SL, Foote KL, Windsor RE (2010) Mini-midvastus vs standard medial parapatellar approach: a prospective, randomized, double-blinded study in patients undergoing bilateral total knee arthroplasty. J Arthroplasty 25(6 Suppl):5–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Ishii.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethical standards

The local institutional review board approved this study. All patients provided informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishii, Y., Noguchi, H., Sato, J. et al. Clinical relevance of active straight leg raising, standing up, and walking after total knee arthroplasty in a cross-sectional study. Eur J Orthop Surg Traumatol 28, 947–953 (2018). https://doi.org/10.1007/s00590-017-2100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-2100-z

Keywords

Navigation