Log in

Iron ore weathering potentials of ectomycorrhizal plants

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeleke RA, Cloete E, Bertrand A, Khasa DP (2010) Mobilisation of potassium and phosphorus from iron ore by ectomycorrhizal fungi. World J Microb Biot 2:1901–1913

    Article  Google Scholar 

  • Ahonen-Jonnarth U, Hees PAWV, Lundstrom US, Finlay RD (2000) Organic acids produced by mycorrhizal pinus sylvestris exposed to elevated aluminium and heavy metal concentrations. New Phytol 146:557–567

    Article  CAS  Google Scholar 

  • Arocena JM, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as revealed by soil solution composition. For Ecol Manage 133:61–70. doi:10.1016/S0378-1127(99)00298-4

    Article  Google Scholar 

  • Balogh-Brunstad Z, Kent Keller C, Thomas Dickinson J, Stevens F, Li CY, Bormann BT (2008) Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim Cosmochim Acta 72:2601–2618. doi:10.1016/j.gca.2008.04.003

    Article  CAS  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci U S A 96:3404–3411

    Article  PubMed  CAS  Google Scholar 

  • Berthelin J (1983) Microbial weathering processes. In: Krumbein WE (ed) Microbial geochemistry. Blackwell Scientific, Oxford, pp 223–262

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Burford EP, Kierans M, Gadd GM (2003) Geomycology: fungi in mineral substrata. Mycologist 17:98–107. doi:10.1017/S0269-915X(03)00311-2

    Article  Google Scholar 

  • Calvaruso C, Turpault M, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72:1258–1266. doi:10.1128/AEM.72.2.1258-1266.2006

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, Turpault M, Uroz S, Leclerc E, Kies A, Frey-Klett P (2010) Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant Soil 328:145–154. doi:10.1007/s11104-009-0092-0

    Article  CAS  Google Scholar 

  • Cromack K, Sollins P, Graustein W, Speidel K, Todd AW, Spycher G, Ching YL, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil boil biochem 11:463–468

    Article  CAS  Google Scholar 

  • Delvasto P, Ballester A, Muñoz JA, González F, Blázquez ML, Igual JM, Valverde A, García-Balboa C (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Minerals Eng 22:1–9. doi:10.1016/j.mineng.2008.03.001

    Article  CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K (1992) Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biol Biochem 24:447–453. doi:10.1016/0038-0717(92)90207-E

    Article  Google Scholar 

  • Fox TR, Comerford NB, McFee WW (1990) Kinetics of phosphorus release from spodosols: effects of oxalate and formate. Soil Sci Soc Am J 54:1441–1447

    Article  CAS  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Google Scholar 

  • Glowa KR, Arocena JM, Massicotte HB (2003) Extraction of potassium and or magnesium from selected soil minerals by Piloderma. Geomicrobiol J 20:99–111

    Article  CAS  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    Article  CAS  Google Scholar 

  • Hoffland E, Giesler R, Jongmans AG, Nv B (2003) Feldspar tunneling by fungi along natural productivity gradients. Ecosystems 6:739–746

    Article  Google Scholar 

  • Jain N, Sharma D (2004) Biohydrometallurgy for nonsulfidic minerals—a review. Geomicrobiol J 21:135–144

    Article  CAS  Google Scholar 

  • Jongmans AG, van Breemen N, Lundstrom U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Lapeyrie F, Chilvers GA, Bhem CA (1987) oxalic acid synthesis by the mycorrhizal fungus Paxillus involutus (Batsch. Ex Fr.) Fr. New Phytol 106:139–146

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Cakmak I (1987) Root-induced changes of nutrient availability in the rhizosphere. J Plant Nutr 10:1175

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine root to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Mimmo T, Ghizzi M, Marzadori C, Gessa C (2008) Organic acid extraction from rhizosphere soil: effect of field-moist, dried and frozen samples. Plant Soil 312:175–184

    Article  CAS  Google Scholar 

  • Modak JM, Vasan SS, Natarajan KA (2001) Calcium removal from bauxite using Paenibacillus polymyxa. In: Kawatra SK, Natarajan KA (eds) Mineral biotechnology: microbial aspects of mineral beneficiation, metal extraction, and environmental control. Society for Mining, Metallurgy, and Exploration, United States of America, pp 13–25

    Google Scholar 

  • Ogilvie P (2002). Sishen Phosphate Project: Brecciated laminated ore and Conglomeratic ore. Sishen, North Western Cape: Report.

  • Olsson PA, Wallander H (1998) Interactions between ectomycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27:195–205. doi:10.1016/S0168-6496(98)00068-3

    Article  CAS  Google Scholar 

  • Paris F, Bonnaud P, Ranger J, Lapeyrie F (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant Soil 177:191–201

    Article  CAS  Google Scholar 

  • Parkinson JA, Allen SE (1975) A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal 6:1–11

    Google Scholar 

  • Parks EJ, Olson GJ, Brinckman FE, Baldi F (1990) Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. J Ind Microbiol Biot 5:183–189

    CAS  Google Scholar 

  • Pugh RJ, Boutonnet-Kizling M, Palm C (1995) Grinding of wollastonite under gaseous environments: influence on acidic/basic surface sites. Minerals Eng 8:1239–1246. doi:10.1016/0892-6875(95)00088-8

    Article  CAS  Google Scholar 

  • Richards JM (1990 - 1992) A mineralogical characterisation of reference samples of Sishen ore from Sishen Mine, North Western Cape: Reports 1 – 12.

  • Schoenholtz SH, Miegroet HV, Burger JA (2000) A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. For Ecol Manage 138:335–356. doi:10.1016/S0378-1127(00)00423-0

    Article  Google Scholar 

  • Sheng XF, Zhao F, He LYan, Qiu G, Chen L (2008) Isolation and characterization of silicate mineral-solubilizing Bacillus globisporus Q12 from the surfaces of weathered feldspar. Can J Microbiol 54(5):1064–1068

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Dickson S (1997) VA mycorrhizas: basic research techniques. Cooperative Research Centre for soil and Land Management, Adelaide

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

  • Sverdrup H (2009) Chemical weathering of soil minerals and the role of biological processes. Fungal Biol Rev 23:94–100. doi:10.1016/j.fbr.2009.12.001

    Article  Google Scholar 

  • van Schöll L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171:805–814

    Article  PubMed  Google Scholar 

  • van Scholl L, Kuyper T, Smits M, Landeweert R, Hoffland E, Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Article  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196:123–131. doi:10.1023/A:1004230525164

    Article  CAS  Google Scholar 

  • Williams P, Cloete T (2008) Microbial community study of the iron ore concentrate of the Sishen Iron Ore Mine, South Africa. World J Microb Biot 24:2531–2538

    Article  Google Scholar 

  • Yuan L, Huang J, Li X, Christie P (2004) Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots. Plant Soil 262:351–361

    Google Scholar 

  • Yusfin Y, Chernousov P, Garten V, Karpov Y, Petelin A (1999) The role of alkalis and conserving resources in blast-furnace smelting. Metallurgist 43:54–58

    Article  Google Scholar 

Download references

Acknowledgement

We would like to show our appreciation to Kumba Iron Ore Ltd for financial support and material resources. We are also grateful for the contribution of Mr Gaetan Daigle to the statistical analyses. Our special thanks go to Annie Champagne, Josee, Andre Gagne, Andrew Coughlan, Alain Atangana, Paul Desaulnais and François Larochelle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Adeleke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adeleke, R.A., Cloete, T.E., Bertrand, A. et al. Iron ore weathering potentials of ectomycorrhizal plants. Mycorrhiza 22, 535–544 (2012). https://doi.org/10.1007/s00572-012-0431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-012-0431-5

Keywords

Navigation