Log in

Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma

  • Original Article―Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Liquid biopsies, particularly those involving circulating tumor DNA (ctDNA), are rapidly emerging as a non-invasive alternative to tumor biopsies. However, clinical applications of ctDNA analysis in hepatocellular carcinoma (HCC) have not been fully elucidated.

Methods

We measured the amount of plasma-derived cell-free DNA (cfDNA) in HCC patients before (n = 100) and a few days after treatment (n = 87), including radiofrequency ablation, transarterial chemoembolization, and molecular-targeted agents (MTAs), and prospectively analyzed their associations with clinical parameters and prognosis. TERT promoter mutations in cfDNA were analyzed using droplet digital PCR. Furthermore, we performed a comprehensive mutational analysis of post-treatment cfDNA via targeted ultra-deep sequencing (22,000× coverage) in a panel of 275 cancer-related genes in selected patients.

Results

Plasma cfDNA levels increased significantly according to HCC clinical stage, and a high cfDNA level was independently associated with a poor prognosis. TERT promoter mutations were detected in 45% of all cases but were not associated with any clinical characteristics. cfDNA levels increased significantly a few days after treatment, and a greater increase in post-treatment cfDNA levels was associated with a greater therapeutic response to MTAs. The detection rate of TERT mutations increased to 57% using post-treatment cfDNA, suggesting that the ctDNA was enriched. Targeted ultra-deep sequencing using post-treatment cfDNA after administering lenvatinib successfully detected various gene mutations and obtained promising results in lenvatinib-responsive cases.

Conclusions

Post-treatment cfDNA analysis may facilitate the construction of biomarkers for predicting MTA treatment effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

HCC:

Hepatocellular carcinoma

ctDNA:

Circulating tumor DNA

cfDNA:

Cell-free DNA

RFA:

Radiofrequency ablation

TACE:

Transarterial chemoembolization

MTA:

Molecular-targeted agent

BCLC staging system:

Barcelona clinic liver cancer staging system

AFP:

Alpha-fetoprotein

AFP-L3:

Lens culinaris agglutinin-reactive fraction of AFP

DCP:

Des-gamma-carboxy prothrombin

ddPCR:

Droplet digital PCR

TERT:

Telomerase reverse transcriptase

References

  1. Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019;380:1450–62.

    CAS  PubMed  Google Scholar 

  2. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    CAS  Google Scholar 

  3. Cheng A-L, Kang Y-K, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia–Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    CAS  PubMed  Google Scholar 

  4. Bruix J, Qin S, Merle P, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66.

    CAS  PubMed  Google Scholar 

  5. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–73.

    CAS  PubMed  Google Scholar 

  6. Abou-Alfa GK, Meyer T, Cheng AL, et al. Cabozantinib in patients with advanced and progressing hepatocellular carcinoma. N Engl J Med. 2018;379:54–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu AX, Kang Y-K, Yen C-J, et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:282–96.

    CAS  PubMed  Google Scholar 

  8. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, double-blind, phase III trial. J Clin Oncol. 2020;38:193–202.

    CAS  PubMed  Google Scholar 

  10. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 2020;382:1894–905.

    CAS  PubMed  Google Scholar 

  11. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–37.

    CAS  PubMed  Google Scholar 

  12. Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018;379:1754–65.

    CAS  PubMed  Google Scholar 

  13. Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous diagnostic and therapeutic approaches for hepatocellular carcinoma. What is the risk and the outcome? Seeding risk for percutaneous approach of HCC. Cancer Treat Rev. 2007;33:437–47.

    CAS  PubMed  Google Scholar 

  14. Ng CKY, Di Costanzo GG, Terracciano LM, et al. Circulating cell-free DNA in hepatocellular carcinoma: current insights and outlook. Front Med (Lausanne). 2018;5:78.

    Google Scholar 

  15. Cai ZX, Chen G, Zeng YY, et al. Circulating tumor DNA profiling reveals clonal evolution and real-time disease progression in advanced hepatocellular carcinoma. Int J Cancer. 2017;141:977–85.

    CAS  PubMed  Google Scholar 

  16. Huang A, Zhao X, Yang XR, et al. Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J Hepatol. 2017;67:293–301.

    CAS  PubMed  Google Scholar 

  17. Ng CKY, Di Costanzo GG, Tosti N, et al. Genetic profiling using plasma-derived cell-free DNA in therapy-naive hepatocellular carcinoma patients: a pilot study. Ann Oncol. 2018;29:1286–91.

    CAS  PubMed  Google Scholar 

  18. Labgaa I, Villacorta-Martin C, D’Avola D, et al. A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene. 2018;37:3740–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaseb AO, Sanchez NS, Sen S, et al. Molecular profiling of hepatocellular carcinoma using circulating cell-free DNA. Clin Cancer Res. 2019;25:6107–18.

    CAS  PubMed  Google Scholar 

  20. Bruix J, Sherman M. American association for the study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.

    PubMed  PubMed Central  Google Scholar 

  21. Rago C, Huso DL, Diehl F, et al. Serial assessment of human tumor burdens in mice by the analysis of circulating DNA. Cancer Res. 2007;67:9364–70.

    CAS  PubMed  Google Scholar 

  22. Takai E, Totoki Y, Nakamura H, et al. Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 2015;5:18425.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McEvoy AC, Calapre L, Pereira MR, et al. Sensitive droplet digital PCR method for detection of TERT promoter mutations in cell free DNA from patients with metastatic melanoma. Oncotarget. 2017;8:78890–900.

    PubMed  PubMed Central  Google Scholar 

  24. Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.

    PubMed  PubMed Central  Google Scholar 

  25. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  PubMed  Google Scholar 

  26. Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.

    CAS  PubMed  Google Scholar 

  27. Xu C, Gu X, Padmanabhan R, et al. smCounter2: an accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers. Bioinformatics. 2019;35:1299–309.

    CAS  PubMed  Google Scholar 

  28. Flicek P, Amode MR, Barrell D, et al. Ensembl 2014. Nucleic Acids Res. 2014;42:D749–55.

    CAS  PubMed  Google Scholar 

  29. Cingolani P, Platts A, Le Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.

    CAS  Google Scholar 

  30. Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell. 2017;169(1327–41):e23.

    Google Scholar 

  31. Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    CAS  PubMed  Google Scholar 

  32. Stroun M, Anker P, Lyautey J, et al. Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol. 1987;23:707–12.

    CAS  PubMed  Google Scholar 

  33. Ren N, Qin LX, Tu H, et al. The prognostic value of circulating plasma DNA level and its allelic imbalance on chromosome 8p in patients with hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132:399–407.

    CAS  PubMed  Google Scholar 

  34. Tokuhisa Y, Iizuka N, Sakaida I, et al. Circulating cell-free DNA as a predictive marker for distant metastasis of hepatitis C virus-related hepatocellular carcinoma. Br J Cancer. 2007;97:1399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Howell J, Atkinson SR, Pinato DJ, et al. Identification of mutations in circulating cell-free tumour DNA as a biomarker in hepatocellular carcinoma. Eur J Cancer. 2019;116:56–66.

    CAS  PubMed  Google Scholar 

  36. Krenzien F, Katou S, Papa A, et al. Increased cell-free DNA plasma concentration following liver transplantation is linked to portal hepatitis and inferior survival. J Clin Med. 2020;9:1543.

    CAS  PubMed Central  Google Scholar 

  37. Liao W, Mao Y, Ge P, et al. Value of quantitative and qualitative analyses of circulating cell-free DNA as diagnostic tools for hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore). 2015;94:e722.

    CAS  Google Scholar 

  38. Jiao J, Watt GP, Stevenson HL, et al. Telomerase reverse transcriptase mutations in plasma DNA in patients with hepatocellular carcinoma or cirrhosis: prevalence and risk factors. Hepatol Commun. 2018;2:718–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ako S, Nouso K, Kinugasa H, et al. Human telomerase reverse transcriptase gene promoter mutation in serum of patients with hepatocellular carcinoma. Oncology. 2020;98:311–7.

    CAS  PubMed  Google Scholar 

  40. Akuta N, Suzuki F, Kobayashi M, et al. Detection of TERT promoter mutation in serum cell-free DNA using wild-type blocking PCR combined with Sanger sequencing in hepatocellular carcinoma. J Med Virol. 2020. https://doi.org/10.1002/jmv.25724 (online ahead of print).

    Article  PubMed  Google Scholar 

  41. Chuma M, Uojima H, Numata K, et al. Early changes in circulating FGF19 and Ang-2 levels as possible predictive biomarkers of clinical response to Lenvatinib therapy in hepatocellular carcinoma. Cancers (Basel). 2020;12:293.

    CAS  Google Scholar 

  42. Teufel M, Seidel H, Kochert K, et al. Biomarkers associated with response to regorafenib in patients with hepatocellular carcinoma. Gastroenterology. 2019;156:1731–41.

    CAS  PubMed  Google Scholar 

  43. Fujita A, Ochi N, Fujimaki H, et al. A novel WTX mutation in a female patient with osteopathia striata with cranial sclerosis and hepatoblastoma. Am J Med Genet A. 2014;164:998–1002.

    CAS  Google Scholar 

  44. Fujimoto A, Totoki Y, Abe T, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44:760–4.

    CAS  PubMed  Google Scholar 

  45. Guan C, He L, Chang Z, et al. ZNF774 is a potent suppressor of hepatocarcinogenesis through dampening the NOTCH2 signaling. Oncogene. 2020;39:1665–80.

    CAS  PubMed  Google Scholar 

  46. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas. Cell. 2018;173(321–37):e10.

    Google Scholar 

  47. Ono A, Fujimoto A, Yamamoto Y, et al. Circulating tumor DNA analysis for liver cancers and its usefulness as a liquid biopsy. Cell Mol Gastroenterol Hepatol. 2015;1:516–34.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Bristol-Myers Squibb Research Grant, Takeda Science Foundation, MSD Life Science Foundation, The Naito Foundation, Life Science Foundation of Japan, The Cell Science Research Foundation (H.N.), the Charitable Trust Laboratory Medicine Research Foundation of Japan (M.S.), JSPS KAKENHI Grant Numbers JP18K15741 (T.N.), JP18H02789 (H.N.), and JP20K08352 (R.T.), and the Research Program on Hepatitis from Japan Agency for Medical Research and Development (AMED) under Grant Number JP18fk0210040, JP19fk0210040, JP20fk0210040 (H.N. and K.K.), JP19fk0210059, and JP20fk0210059 (H.N.).

Author information

Authors and Affiliations

Authors

Contributions

TN, HN: conceptualization; TN, HN: data curation; TN, HN: formal analysis; YH, TW, TY, MNK, RN, MS, TM, KU, KE, YK, YT: material support; TK, MO: technical support; TN: drafting of the manuscript; HN, RT: critical review of the manuscript; RT, KK: study supervision.

Corresponding author

Correspondence to Hayato Nakagawa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

The study protocol was approved by the University of Tokyo Medical Research Center Ethics Committee (Approval Number: 11839).

Consent to participate

All patients provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsuka, T., Nakagawa, H., Hayata, Y. et al. Post-treatment cell-free DNA as a predictive biomarker in molecular-targeted therapy of hepatocellular carcinoma. J Gastroenterol 56, 456–469 (2021). https://doi.org/10.1007/s00535-021-01773-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-021-01773-4

Keywords

Navigation