Log in

Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Facial expression intensity estimation has promising applications in health care and affective computing, such as monitoring patients’ pain feelings. However, labeling facial expression intensity is a specialized and time-consuming task. Ordinal regression (OR)-based methods address this issue to some extent by estimating the relative intensity but failing to estimate the absolute intensity due to lack of exploring useful information from noisy labels caused by manual and automatic labeling biases. Inspired by label distribution learning (LDL) to resist the noisy labels, this paper introduces the label-distribution-learning-enhanced OR (LDL-EOR) approach for facial expression intensity estimation. This design aims to utilize LDL to improve the accuracy of absolute intensity estimation while kee** the cost of manual labeling low. The label distribution is converted into a continuous intensity value by calculating the mathematical expectation, which makes the prediction results meet both relative and absolute intensity constraints. Ensuring the feasibility of LDL-EOR in different supervised settings, this paper presents a unified label distribution generation framework to automatically relabel training data frame by frame. The generated soft labels are used to supervise the LDL-EOR model and enhance its robustness to the noise existing in the original labels. Numerous experiments were conducted on three public expression datasets (CK+, BU-4DFE, and PAIN) to validate the superiority of LDL-EOR relative to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used in our paper (CK+, BU-4DFE, and PAIN) are publicly available.

References

  1. Yang, P., Liu, Q., Metaxas, D.N.: Rankboost with l1 regularization for facial expression recognition and intensity estimation. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1018–1025 (2009). https://doi.org/10.1109/ICCV.2009.5459371

  2. Rudovic, O., Pavlovic, V., Pantic, M.: Multi-output laplacian dynamic ordinal regression for facial expression recognition and intensity estimation, pp. 2634–2641 (2012). https://doi.org/10.1109/CVPR.2012.6247983

  3. Sabri, M., Kurita, T.: Facial expression intensity estimation using siamese and triplet networks. Neurocomputing 313, 143–154 (2018). https://doi.org/10.1016/j.neucom.2018.06.054

    Article  Google Scholar 

  4. Saha, C., Ghosh, K.: Estimation of facial expression intensity from a sequence of binary face images, pp. 1–6 (2011). https://doi.org/10.1109/ICIIP.2011.6108935

  5. Ming, Z., Bugeau, A., Rouas, J.-L., Shochi, T.: Facial action units intensity estimation by the fusion of features with multi-kernel support vector machine. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 06, pp. 1–6 (2015). https://doi.org/10.1109/FG.2015.7284870

  6. Batista, J.C., Bellon, O.R., Silva, L.: Landmark-free smile intensity estimation. In: Workshop Conf. Graphics (2016)

  7. Lee, K.K., Xu, Y.: Real-time estimation of facial expression intensity. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 2, pp. 2567–25722 (2003). https://doi.org/10.1109/ROBOT.2003.1241979

  8. Kamarol, S.K.A., Jaward, M.H., Kälviäinen, H., Parkkinen, J., Parthiban, R.: Joint facial expression recognition and intensity estimation based on weighted votes of image sequences. Pattern Recogn. Lett. 92, 25–32 (2017). https://doi.org/10.1016/j.patrec.2017.04.003

    Article  ADS  Google Scholar 

  9. Xue, M., Duan, X., Liu, W., Ren, Y.: A semantic facial expression intensity descriptor based on information granules. Inf. Sci. 528, 113–132 (2020). https://doi.org/10.1016/j.ins.2020.04.012

    Article  MathSciNet  Google Scholar 

  10. Lien, J.J.-J., Kanade, T., Cohn, J.F., Li, C.-C.: Subtly different facial expression recognition and expression intensity estimation. In: Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231), pp. 853–859 (1998). https://doi.org/10.1109/CVPR.1998.698704

  11. Liao, C.-T., Chuang, H.-J., Lai, S.-H.: Learning expression kernels for facial expression intensity estimation. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2217–2220 (2012). https://doi.org/10.1109/ICASSP.2012.6288354

  12. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. (2017). https://doi.org/10.1145/3136625

    Article  Google Scholar 

  13. Nomiya, H., Sakaue, S., Hochin, T.: Recognition and intensity estimation of facial expression using ensemble classifiers. Int. J. Network. Distrib. Comput. 4, 203–211 (2016). https://doi.org/10.2991/ijndc.2016.4.4.1

    Article  Google Scholar 

  14. Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: Intensity estimation of spontaneous facial action units based on their sparsity properties. IEEE Trans. Cybern. 46(3), 817–826 (2016). https://doi.org/10.1109/TCYB.2015.2416317

    Article  PubMed  Google Scholar 

  15. Zhang, Y., Wu, B., Dong, W., Li, Z., Liu, W., Hu, B.-G., Ji, Q.: Joint representation and estimator learning for facial action unit intensity estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3452–3461 (2019). https://doi.org/10.1109/CVPR.2019.00357

  16. Lu, G., Zhang, W.: Happiness intensity estimation for a group of people in images using convolutional neural networks. In: 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), pp. 1707–1710 (2019). https://doi.org/10.1109/EITCE47263.2019.9094832

  17. Tavakolian, M., Hadid, A.: A spatiotemporal convolutional neural network for automatic pain intensity estimation from facial dynamics. Int. J. Comput. Vision (2019). https://doi.org/10.1007/s11263-019-01191-3

    Article  Google Scholar 

  18. Ntinou, I., Sanchez, E., Bulat, A., Valstar, M., Tzimiropoulos, G.: A transfer learning approach to heatmap regression for action unit intensity estimation. IEEE Trans. Affect. Comput. 14(1), 436–450 (2023). https://doi.org/10.1109/TAFFC.2021.3061605

    Article  Google Scholar 

  19. Fan, Y., Lam, J., Li, V.: Facial action unit intensity estimation via semantic correspondence learning with dynamic graph convolution. Proc. AAAI Conf. Artif. Intell. 34(07), 12701–12708 (2020)

    Google Scholar 

  20. Batista, J.C., Albiero, V., Bellon, O.R.P., Silva, L.: Aumpnet: Simultaneous action units detection and intensity estimation on multipose facial images using a single convolutional neural network. In: 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 866–871 (2017). https://doi.org/10.1109/FG.2017.111

  21. Tavakolian, M., Bordallo Lopez, M., Liu, L.: Self-supervised pain intensity estimation from facial videos via statistical spatiotemporal distillation. Pattern Recogn. Lett. 140, 26–33 (2020). https://doi.org/10.1016/j.patrec.2020.09.012

    Article  ADS  Google Scholar 

  22. Song, X., Shi, T., Feng, Z., Song, M., Lin, J., Lin, C., Fan, C., Yuan, Y.: Unsupervised learning facial parameter regressor for action unit intensity estimation via differentiable renderer. In: Proceedings of the 28th ACM International Conference on Multimedia (2020). https://doi.org/10.1145/3394171.3413955

  23. Zhao, R., Gan, Q., Wang, S., Ji, Q.: Facial expression intensity estimation using ordinal information. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3466–3474 (2016). https://doi.org/10.1109/CVPR.2016.377

  24. Zhang, Y., Dong, W., Hu, B.-G., Ji, Q.: Weakly-supervised deep convolutional neural network learning for facial action unit intensity estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2314–2323 (2018). https://doi.org/10.1109/CVPR.2018.00246

  25. Geng, X.: Label distribution learning. IEEE Trans. Knowl. Data Eng. 28(7), 1734–1748 (2016). https://doi.org/10.1109/TKDE.2016.2545658

    Article  Google Scholar 

  26. Gao, B.-B., **ng, C., **e, C.-W., Wu, J., Geng, X.: Deep label distribution learning with label ambiguity. IEEE Trans. Image Process. 26(6), 2825–2838 (2017). https://doi.org/10.1109/TIP.2017.2689998

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  27. Díaz, R., Marathe, A.: Soft labels for ordinal regression. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4733–4742 (2019). https://doi.org/10.1109/CVPR.2019.00487

  28. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 94–101 (2010). https://doi.org/10.1109/CVPRW.2010.5543262

  29. Zhang, X., Yin, L., Cohn, J.F., Canavan, S., Reale, M., Horowitz, A., Liu, P.: A high-resolution spontaneous 3d dynamic facial expression database. In: 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), pp. 1–6 (2013). https://doi.org/10.1109/FG.2013.6553788

  30. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Matthews, I.: Painful data: The unbc-mcmaster shoulder pain expression archive database. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition (FG), pp. 57–64 (2011). https://doi.org/10.1109/FG.2011.5771462

  31. Prkachin, K.M., Solomon, P.E.: The structure, reliability and validity of pain expression: evidence from patients with shoulder pain. Pain 139(2), 267–274 (2008). https://doi.org/10.1016/j.pain.2008.04.010

    Article  PubMed  Google Scholar 

  32. Shrout, P.E., Fleiss, J.L.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–8 (1979)

    Article  CAS  PubMed  Google Scholar 

  33. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Proceedings of the 9th International Conference on Neural Information Processing Systems, pp. 155–161 (1996)

  34. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 145–152 (2005). https://doi.org/10.1145/1102351.1102370

  35. Xu, R., Han, J., Chen, J.: Ordinal information based facial expression intensity estimation for emotional interaction: a novel semi-supervised deep learning approach. Computing 1–18 (2022)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 62377018 and the Research Funds of CCNU from the Colleges’ Basic Research and Operation of MOE, under Grant No. CCNU22JC010.

Author information

Authors and Affiliations

Authors

Contributions

RX and JC: proposed the conceptualization and methodology, RX and ZW: wrote the main manuscript and prepared the figures, ZW and LZ: conducted the experiments, and JC: revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to **gying Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by R. Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Wang, Z., Chen, J. et al. Facial expression intensity estimation using label-distribution-learning-enhanced ordinal regression. Multimedia Systems 30, 13 (2024). https://doi.org/10.1007/s00530-023-01219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-023-01219-2

Keywords

Navigation