Log in

MSAFIS: an evolving fuzzy inference system

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, the problem of learning in big data is considered. To solve this problem, a new algorithm is proposed as the combination of two important evolving and stable intelligent algorithms: the sequential adaptive fuzzy inference system (SAFIS), and stable gradient descent algorithm (SGD). The modified sequential adaptive fuzzy inference system (MSAFIS) is the SAFIS with the difference that the SGD is used instead of the Kalman filter for the updating of parameters. The SGD improves the Kalman filter, because it first obtains a better learning in big data. The effectiveness of the introduced method is verified by two experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn CK (2012) An error passivation approach to filtering for switched neural networks with noise disturbance. Neural Comput Appl 21(5):853–861

    Article  Google Scholar 

  • Ahn CK (2014) A new solution to the induced l\(\infty \) finite impulse response filtering problem based on two matrix inequalities. Int J Control 87(2):404–409

    Article  MathSciNet  MATH  Google Scholar 

  • Ahn CK, Lim MT (2013) Model predictive stabilizer for T-S fuzzy recurrent multilayer neural network models with general terminal weighting matrix. Neural Comput Appl 23(Suppl 1):S271–S277

    Article  Google Scholar 

  • Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems—methodology and applications. Wiley, New York

    Book  Google Scholar 

  • Bordignon F, Gomide F (2014) Uninorm based evolving neural networks and approximation capabilities. Neurocomputing 127:13–20

    Article  Google Scholar 

  • Bouchachia A (2008) Incremental Learning. Encyclopedia of Data Warehousing and Mining, pp 1006–1012

  • Bouchachia A (2014) Online dataprocessing. Neurocomputing 126:116–117

    Article  Google Scholar 

  • Bouchachia A, Lena A, Vanaret C (2014) Online and interactive self-adaptive learning of user profile using incremental evolutionary algorithms. Evol Syst 5:143–157

    Article  Google Scholar 

  • Bouchachia A, Vanaret C (2014) GT2FC: an online growing interval type-2 self-learning fuzzy classifier. IEEE Trans Fuzzy Syst 22(4):999–1018

    Article  Google Scholar 

  • Gama J (2010) Knowledge discovery from data streams. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation. ACM Comput Surv 46(4):44

    Article  MATH  Google Scholar 

  • Garcia-Cuesta E, Iglesias JA (2012) User modeling: Through statistical analysis and subspace learning. Expert Syst Appl 39:5243–5250

    Article  Google Scholar 

  • Gomide F, Lughofer E (2014) Recent advances on evolving intelligent systems and applications. Evolv Syst 5:217–218

    Article  Google Scholar 

  • Hartert L, Sayed-Mouchaweh M (2014) Dynamic supervised classification method for online monitoring in non-stationary environments. Neurocomputing 126:118–131

    Article  Google Scholar 

  • Huang G-B, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Trans Syst Man Cybern Part B Cybern 34(6):2284–2292

  • Iglesias JA, Tiemblo A, Ledezma A, Sanchis A (2015) Web news mining in an evolving framework. Inf Fusion. doi:10.1016/j.inffus.2015.07.004

  • Iglesias JA, Ledezma A, Sanchis A (2014) Evolving classification of UNIX users’ behaviors. Evolv Syst 5:231–238

    Article  Google Scholar 

  • Iglesias JA, Skrjanc I (2014) Applications, results and future direction. Evolv Syst 5:1–2

    Article  Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach, 2nd edn. Springer Verlag, London

    MATH  Google Scholar 

  • Klancar G, Skrjanc I (2015) Evolving principal component clustering with a low run-timecomplexity for LRF data map**. Appl Soft Comput 35:349–358

  • Lughofer E (2011) Evolving fuzzy systems—methodologies, advanced concepts and applications. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Lughofer E, Cernuda C, Kindermann S, Pratama M (2015) Generalized smart evolving fuzzy systems. Evolv Syst. doi:10.1007/s12530-015-9132-6

  • Lughofer E, Sayed-Mouchaweh M (2015) Autonomous data stream clustering implementing split-and-merge concepts—towards a plug-and-play approach. Inf Sci 304:54–79

    Article  Google Scholar 

  • Lughofer E, Sayed-Mouchaweh M (2015) Adaptive and on-line learning in non-stationary environments. Evol Syst 6:75–77

    Article  Google Scholar 

  • Marques Silva A, Caminhas W, Lemos A, Gomide F (2014) A fast learning algorithm for evolving neo-fuzzy neuron. Appl Soft Comput 14:194–209

    Article  Google Scholar 

  • Ordoñez FJ, Iglesias JA, de Toledo P, Ledezma A, Sanchis A (2013) Online activity recognition using evolving classifiers. Expert Syst Appl 40:1248–1255

    Article  Google Scholar 

  • Perez-Cruz JH, Rubio JJ, Pacheco J, Soriano E (2014) State estimation in MIMO nonlinear systems subject to unknown deadzones using recurrent neural networks. Neural Comput Appl 25(3–4):693–701

    Article  Google Scholar 

  • Perez-Cruz JH, Rubio JJ, Encinas R, Balcazar R (2014) Singularity-free neural control for the exponential trajectory tracking in multiple-input uncertain systems with unknown deadzone nonlinearities. The Scientific World Journal 2014:1–10

    Article  Google Scholar 

  • Pratama M, Anavatti SG, Er MJ, Lughofer ED (2015) pClass: an effective classifier for streaming examples. IEEE Trans Fuzzy Syst 23(2):369–386

    Article  Google Scholar 

  • Precup R-E, Sabau M-C, Petriu EM (2015) Nature-inspired optimal tuning of input membership functions ofTakagi-Sugeno-Kang fuzzy models for Anti-lock Braking Systems. Appl Soft Comput 27:575–589

    Article  Google Scholar 

  • Rong HJ, Sundararajan N, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9):1260–1275

    Article  MathSciNet  MATH  Google Scholar 

  • Rubio JJ, Angelov P, Pacheco J (2011) An uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans Neural Netw 22(3):356–366

    Article  Google Scholar 

  • Rubio JJ, Ortiz F, Mariaca CR, Tovar JC (2013) A method for online pattern recognition for abnormal eye movements. Neural Comput Appl 22(3–4):597–605

    Article  Google Scholar 

  • Rubio JJ, Vazquez DM, Mujica-Vargas D (2013) Acquisition system and approximation of brain signals. IET Sci Meas Technol 7(4):232–239

    Article  Google Scholar 

  • Sayed-Mouchaweh M, Lughofer E (2015) Decentralized fault diagnosis approach without a global model for fault diagnosis of discrete event systems. Int J Control. doi:10.1080/00207179.2015.1039594

  • Sayed-Mouchaweh M, Lughofer E (2012) Learning in non-stationary environments: methods and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Torres C, Rubio JJ, Aguilar-Ibañez C, Perez-Cruz JH (2014) Stable optimal control applied to a cylindrical robotic arm. Neural Comput Appl 24(3–4):937–944

    Article  Google Scholar 

  • Zdesar A, Dovzan D, Skrjanc I (2014) Self-tuning of 2 DOF control based on evolving fuzzy model. Appl Soft Comput 19:403–418

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the editors and the reviewers for their valuable comments. The first author thanks the Secretaría de Investigación y Posgrado, Comisión de Operación y Fomento de Actividades Académicas, and Consejo Nacional de Ciencia y Tecnología for their help in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José de Jesús Rubio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús Rubio, J., Bouchachia, A. MSAFIS: an evolving fuzzy inference system. Soft Comput 21, 2357–2366 (2017). https://doi.org/10.1007/s00500-015-1946-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1946-4

Keywords

Navigation